The rate of change in the number of bacteria in a culture is proportional to the number present. In a certain laboratory experiment, a culture has 10,000 bacterial initially, 20,000 bacteria at time t 1 minutes, and 100,000 bacteria at (t 1+10 ) minutes.a. In terms of t only, find the number of bacteria in the culture at any time t minutes, t ≥ 0b. How many bacteria were there after 20 minutes?c. How many minutes had elapsed when the 20,000 bacteria were observed?

Respuesta :

Answer:

(a) [tex]N(t)=10000e^{(\frac{ln5}{10})t }[/tex]

(b) 25,000

(c) 4.3068 min.

Step-by-step explanation:

Rate of change in the number of bacteria is proportional to the number present.

Let N is the population of bacteria.

[tex]\frac{dN}{dt}[/tex] ∝ N ⇒ [tex]\frac{dN}{dt}=kt[/tex] { k = proportionality constant}

initial population No. = 10,000

                          [tex]N(t_{1} )[/tex] = 20,000

         and [tex]N(t_{1}+10 )=100,000[/tex]

(a) For population growth

[tex]N(t)=N_{0}e^{kt}=10000e^{kt}[/tex]

[tex]N(t_1)=10,000e^{kt_1}=20,000[/tex]

[tex]e^{kt}=2[/tex]

[tex]ln(e^{kt_1})=ln(2)[/tex]

[tex]kt_1=ln(2)[/tex]

[tex]t_{1}=\frac{ln2}{k}[/tex] ----------(1)

[tex]N(t_1+t_{10})=100,000[/tex]

[tex]100,000=10,000e^{k(t_1+10)}[/tex]

[tex]10=e^{k(t_1+10)}[/tex]

[tex]ln10=ln[e^{k(t_1+10)}][/tex]

[tex]k(t_1+10)=ln10[/tex]

[tex]k(t_1)=ln10-10k[/tex]

[tex]t_1=\frac{ln10-10k}{k}[/tex] ----------(2)

from equation (1) and (2)

[tex]\frac{ln_2}{k}=\frac{ln10-10k}{k}[/tex]

[tex]ln10-ln2=10k[/tex]

[tex]k=\frac{ln5}{10}[/tex]

so expression will be

[tex]N(t)=10000e^{(\frac{ln5}{10})t }[/tex]

(b) for t = 20

    [tex]N_{(20)}=10,000e\frac{ln5}{10}\times 20[/tex]

             =  [tex]10,000\times e^{2ln5}[/tex]

            = 10,000 × 25

            = 25,000

(c) Since [tex]t_1=\frac{ln2}{k}[/tex]   [from equation (1)]

                  [tex]=\frac{ln2}{\frac{ln5}{10} }[/tex]

                  [tex]=\frac{ln2}{ln5}\times 10[/tex]

                  = 4.3068

                 = 4.3068 min.

ACCESS MORE