Respuesta :
Answer:
(a) [tex]N(t)=10000e^{(\frac{ln5}{10})t }[/tex]
(b) 25,000
(c) 4.3068 min.
Step-by-step explanation:
Rate of change in the number of bacteria is proportional to the number present.
Let N is the population of bacteria.
[tex]\frac{dN}{dt}[/tex] ∝ N ⇒ [tex]\frac{dN}{dt}=kt[/tex] { k = proportionality constant}
initial population No. = 10,000
[tex]N(t_{1} )[/tex] = 20,000
and [tex]N(t_{1}+10 )=100,000[/tex]
(a) For population growth
[tex]N(t)=N_{0}e^{kt}=10000e^{kt}[/tex]
[tex]N(t_1)=10,000e^{kt_1}=20,000[/tex]
[tex]e^{kt}=2[/tex]
[tex]ln(e^{kt_1})=ln(2)[/tex]
[tex]kt_1=ln(2)[/tex]
[tex]t_{1}=\frac{ln2}{k}[/tex] ----------(1)
[tex]N(t_1+t_{10})=100,000[/tex]
[tex]100,000=10,000e^{k(t_1+10)}[/tex]
[tex]10=e^{k(t_1+10)}[/tex]
[tex]ln10=ln[e^{k(t_1+10)}][/tex]
[tex]k(t_1+10)=ln10[/tex]
[tex]k(t_1)=ln10-10k[/tex]
[tex]t_1=\frac{ln10-10k}{k}[/tex] ----------(2)
from equation (1) and (2)
[tex]\frac{ln_2}{k}=\frac{ln10-10k}{k}[/tex]
[tex]ln10-ln2=10k[/tex]
[tex]k=\frac{ln5}{10}[/tex]
so expression will be
[tex]N(t)=10000e^{(\frac{ln5}{10})t }[/tex]
(b) for t = 20
[tex]N_{(20)}=10,000e\frac{ln5}{10}\times 20[/tex]
= [tex]10,000\times e^{2ln5}[/tex]
= 10,000 × 25
= 25,000
(c) Since [tex]t_1=\frac{ln2}{k}[/tex] [from equation (1)]
[tex]=\frac{ln2}{\frac{ln5}{10} }[/tex]
[tex]=\frac{ln2}{ln5}\times 10[/tex]
= 4.3068
= 4.3068 min.