Answer:
The value of the equilibrium constant for reaction asked is [tex]1.24\times 10^{-7}[/tex].
Explanation:
[tex]CO_2(g)\rightleftharpoons C(s)+O_2(g)[/tex]
[tex]K_{goal}=?[/tex]
[tex]K_{goal}=\frac{[C][O_2]}{[CO_2]}[/tex]
[tex]2CO_2(g)+2H_2O(l)\rightleftharpoons CH_3COOH(l)+2O_2(g)[/tex]..[1]
[tex]K_1=\frac{[CH_3COOH][O_2]^2}{[CO_2]^2[H_2O]^2}[/tex]
[tex]2H_2(g)+O2(g)\rightleftharpoons 2H_2O(l)[/tex]..[2]
[tex]K_2=\frac{[H_2O]^2}{[H_2]^2[O_2]}[/tex]
[tex]CH_3COOH(l)\rightleftharpoons 2C(s)+2H_2(g)+O_2(g)[/tex]..[3]
[tex]K_3=\frac{[C]^2[H_2]^2[O_2]}{[CH_3COOH]}[/tex]
[1] + [2] + [3]
[tex]2CO_2(g)\rightleftharpoons 2C(s)+2O_2(g)[/tex]
( on adding the equilibrium constant will get multiplied with each other)
[tex]K=K_1\times K_2\times K_3[/tex]
[tex]K=5.40\times 10^{-16}\times 1.06\times 10^{10}\times 2.68\times 10^{-9}[/tex]
[tex]K=1.53\times 10^{-14}[/tex]
[tex]K=\frac{[C]^2[O_2]^2}{[CO_2]^2}[/tex]
On comparing the K and [tex]K_{goal}[/tex]:
[tex]K^2=K_{goal}[/tex]
[tex]K_{goal}=\sqrt{K}=\sqrt{1.53\times 10^{-14}}=1.24\times 10^{-7}[/tex]
The value of the equilibrium constant for reaction asked is [tex]1.24\times 10^{-7}[/tex].