Determine the value of the equilibrium constant, KgoalKgoalK_goal, for the reaction CO2(g)⇌C(s)+O2(g)CO2(g)⇌C(s)+O2(g), Kgoal=? Kgoal=? by making use of the following information: 1. 2CO2(g)+2H2O(l)⇌CH3COOH(l)+2O2(g)2CO2(g)+2H2O(l)⇌CH3COOH(l)+2O2(g), K1 = K1 = 5.40×10−165.40×10−16 2. 2H2(g)+O2(g)⇌2H2O(l)2H2(g)+O2(g)⇌2H2O(l), K2 = K2 = 1.06×10101.06×1010 3. CH3COOH(l)⇌2C(s)+2H2(g)+O2(g)CH3COOH(l)⇌2C(s)+2H2(g)+O2(g), K3 = K3 = 2.68×10−92.68×10−9

Respuesta :

Answer:

The value of the equilibrium constant for reaction asked is [tex]1.24\times 10^{-7}[/tex].

Explanation:

[tex]CO_2(g)\rightleftharpoons C(s)+O_2(g)[/tex]

[tex]K_{goal}=?[/tex]

[tex]K_{goal}=\frac{[C][O_2]}{[CO_2]}[/tex]

[tex]2CO_2(g)+2H_2O(l)\rightleftharpoons CH_3COOH(l)+2O_2(g)[/tex]..[1]

[tex]K_1=\frac{[CH_3COOH][O_2]^2}{[CO_2]^2[H_2O]^2}[/tex]

[tex]2H_2(g)+O2(g)\rightleftharpoons 2H_2O(l)[/tex]..[2]

[tex]K_2=\frac{[H_2O]^2}{[H_2]^2[O_2]}[/tex]

[tex]CH_3COOH(l)\rightleftharpoons 2C(s)+2H_2(g)+O_2(g)[/tex]..[3]

[tex]K_3=\frac{[C]^2[H_2]^2[O_2]}{[CH_3COOH]}[/tex]

[1] +  [2] + [3]

[tex]2CO_2(g)\rightleftharpoons 2C(s)+2O_2(g)[/tex]

 ( on adding the equilibrium constant will get multiplied with each other)

[tex]K=K_1\times K_2\times K_3[/tex]

[tex]K=5.40\times 10^{-16}\times 1.06\times 10^{10}\times 2.68\times 10^{-9}[/tex]

[tex]K=1.53\times 10^{-14}[/tex]

[tex]K=\frac{[C]^2[O_2]^2}{[CO_2]^2}[/tex]

On comparing the K and [tex]K_{goal}[/tex]:

[tex]K^2=K_{goal}[/tex]

[tex]K_{goal}=\sqrt{K}=\sqrt{1.53\times 10^{-14}}=1.24\times 10^{-7}[/tex]

The value of the equilibrium constant for reaction asked is [tex]1.24\times 10^{-7}[/tex].

ACCESS MORE