Respuesta :
Answer:
The maximum allowable surface crack length is 7.86 x 10⁻⁴ m
Explanation:
Given;
tensile stress, σ = 13.5 Mpa = 13.5 x 10⁶ Pa
specific surface energy, γ = 1.0 J/m²
modulus of elasticity, E = 225 GPa = 225 x 10⁹ Pa
maximum allowable surface crack length, d = ?
[tex]\sigma = (\frac{2E \gamma}{\pi d} )^{\frac{1}{2}}\\\\d = \frac{2E \gamma}{\pi \sigma ^2} = \frac{2*225*10^9 *1}{\pi (13.5 *10^6)^2} =\frac{450*10^9}{\pi*182.25*10^{12}} = 7.86 *10^{-4} \ m[/tex]
Therefore, the maximum allowable surface crack length is 0.000786 m if MgO component must not fail when a tensile stress of 13.5 MPa is applied.
If the surface energy is 1.0 J/m², the max. allowable surface length will be "7.86 × 10⁻⁴ m".
Elasticity and Stress
According to the question,
Tensile stress, σ = 13.5 MPa or,
= 13.5 × 10⁶ Pa
Specific surface energy, γ = 1.0 J/m²
Elasticity modulus, E = 225 GPa or,
= 225 × 10⁹ Pa
As we know the relation,
→ σ = [tex](\frac{2E \gamma }{\pi d} )^{\frac{1}{2} }[/tex]
Now, max. length will be:
→ d = [tex]\frac{2E \gamma }{\pi \sigma^2}[/tex]
By substituting the values, we get
= [tex]\frac{2\times 225\times 10^{9}\times 1}{\pi (13.5\times 10^6)^2}[/tex]
= [tex]\frac{450\times 10^9}{\pi\times 182.25\times 10^{12}}[/tex]
= 7.86 × 10⁻⁴ m
Thus the response above is appropriate.
Find out more information about stress here:
https://brainly.com/question/14468674