Answer:
95% confidence interval: (2.241,4.227)
Step-by-step explanation:
We are given the following in the question:
Sample mean, [tex]\bar{x}[/tex] = 3.234
Sample size, n = 20
Alpha, α = 0.05
Sample standard deviation, σ = 2.121
95% confidence interval:
[tex]\bar{x} \pm t_{critical}\displaystyle\frac{s}{\sqrt{n}}[/tex]
Putting the values, we get,
[tex]t_{critical}\text{ at degree of freedom 19 and}~\alpha_{0.05} = \pm 2.093[/tex]
[tex]3.234 \pm 2.093(\dfrac{2.121}{\sqrt{20}} ) = 3.234 \pm 0.993 = (2.241,4.227)[/tex]
(2.241, 4.227) is the required confidence interval.