Respuesta :
Answer: The maximum mass of [tex]H_2O[/tex] produced is, 61.0 grams.
Explanation : Given,
Mass of [tex]NH_3[/tex] = 90.6 g
Mass of [tex]O_2[/tex] = 90.6 g
Molar mass of [tex]NH_3[/tex] = 17 g/mol
Molar mass of [tex]O_2[/tex] = 32 g/mol
First we have to calculate the moles of [tex]NH_3[/tex] and [tex]O_2[/tex].
[tex]\text{Moles of }NH_3=\frac{\text{Given mass }NH_3}{\text{Molar mass }NH_3}[/tex]
[tex]\text{Moles of }NH_3=\frac{90.6g}{17g/mol}=5.33mol[/tex]
and,
[tex]\text{Moles of }O_2=\frac{\text{Given mass }O_2}{\text{Molar mass }O_2}[/tex]
[tex]\text{Moles of }O_2=\frac{90.6g}{32g/mol}=2.83mol[/tex]
Now we have to calculate the limiting and excess reagent.
The balanced chemical equation is:
[tex]4NH_3(g)+5O_2(g)\rightarrow 4NO(g)+6H_2O(g)[/tex]
From the balanced reaction we conclude that
As, 5 mole of [tex]O_2[/tex] react with 4 mole of [tex]NH_3[/tex]
So, 2.83 moles of [tex]O_2[/tex] react with [tex]\frac{4}{5}\times 2.83=2.26[/tex] moles of [tex]NH_3[/tex]
From this we conclude that, [tex]NH_3[/tex] is an excess reagent because the given moles are greater than the required moles and [tex]O_2[/tex] is a limiting reagent and it limits the formation of product.
Now we have to calculate the moles of [tex]H_2O[/tex]
From the reaction, we conclude that
As, 5 mole of [tex]O_2[/tex] react to give 6 mole of [tex]H_2O[/tex]
So, 2.83 mole of [tex]O_2[/tex] react to give [tex]\frac{6}{5}\times 2.83=3.39[/tex] mole of [tex]H_2O[/tex]
Now we have to calculate the mass of [tex]H_2O[/tex]
[tex]\text{ Mass of }H_2O=\text{ Moles of }H_2O\times \text{ Molar mass of }H_2O[/tex]
Molar mass of [tex]H_2O[/tex] = 18 g/mole
[tex]\text{ Mass of }H_2O=(3.39moles)\times (18g/mole)=61.0g[/tex]
Therefore, the maximum mass of [tex]H_2O[/tex] produced is, 61.0 grams.