Respuesta :
Answer:
a) [tex]t=\frac{(91-85)-(0)}{2.490\sqrt{\frac{1}{12}}+\frac{1}{15}}=6.222[/tex]
[tex]df=12+15-2=25[/tex]
[tex]p_v =P(t_{25}>6.222) =8.26x10^{-7}[/tex]
So with the p value obtained and using the significance level given [tex]\alpha=0.01[/tex] we have [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis.
b) [tex] (91-85) -2.79 *2.490 \sqrt{\frac{1}{12} +\frac{1}{15}} =3.309[/tex]
[tex] (91-85) +2.79 *2.490 \sqrt{\frac{1}{12} +\frac{1}{15}} =8.691[/tex]
Step-by-step explanation:
Notation and hypothesis
When we have two independent samples from two normal distributions with equal variances we are assuming that
[tex]\sigma^2_1 =\sigma^2_2 =\sigma^2[/tex]
And the statistic is given by this formula:
[tex]t=\frac{(\bar X_1 -\bar X_2)-(\mu_{1}-\mu_2)}{S_p\sqrt{\frac{1}{n_1}}+\frac{1}{n_2}}[/tex]
Where t follows a t distribution with [tex]n_1+n_2 -2[/tex] degrees of freedom and the pooled variance [tex]S^2_p[/tex] is given by this formula:
[tex]\S^2_p =\frac{(n_1-1)S^2_1 +(n_2 -1)S^2_2}{n_1 +n_2 -2}[/tex]
This last one is an unbiased estimator of the common variance [tex]\sigma^2[/tex]
Part a
The system of hypothesis on this case are:
Null hypothesis: [tex]\mu_2 \leq \mu_1[/tex]
Alternative hypothesis: [tex]\mu_2 > \mu_1[/tex]
Or equivalently:
Null hypothesis: [tex]\mu_2 - \mu_1 \leq 0[/tex]
Alternative hypothesis: [tex]\mu_2 -\mu_1 > 0[/tex]
Our notation on this case :
[tex]n_1 =12[/tex] represent the sample size for group 1
[tex]n_2 =15[/tex] represent the sample size for group 2
[tex]\bar X_1 =85[/tex] represent the sample mean for the group 1
[tex]\bar X_2 =91[/tex] represent the sample mean for the group 2
[tex]s_1=3[/tex] represent the sample standard deviation for group 1
[tex]s_2=2[/tex] represent the sample standard deviation for group 2
First we can begin finding the pooled variance:
[tex]\S^2_p =\frac{(12-1)(3)^2 +(15 -1)(2)^2}{12 +15 -2}=6.2[/tex]
And the deviation would be just the square root of the variance:
[tex]S_p=2.490[/tex]
Calculate the statistic
And now we can calculate the statistic:
[tex]t=\frac{(91-85)-(0)}{2.490\sqrt{\frac{1}{12}}+\frac{1}{15}}=6.222[/tex]
Now we can calculate the degrees of freedom given by:
[tex]df=12+15-2=25[/tex]
Calculate the p value
And now we can calculate the p value using the altenative hypothesis:
[tex]p_v =P(t_{25}>6.222) =8.26x10^{-7}[/tex]
Conclusion
So with the p value obtained and using the significance level given [tex]\alpha=0.01[/tex] we have [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis.
Part b
For this case the confidence interval is given by:
[tex] (\bar X_1 -\bar X_2) \pm t_{\alpha/2} S_p \sqrt{\frac{1}{n_1} +\frac{1}{n_2}}[/tex]
For the 99% of confidence we have [tex]\alpha=1-0.99 = 0.01[/tex] and [tex] \alpha/2 =0.005[/tex] and the critical value with 25 degrees of freedom on the t distribution is [tex] t_{\alpha/2}= 2.79[/tex]
And replacing we got:
[tex] (91-85) -2.79 *2.490 \sqrt{\frac{1}{12} +\frac{1}{15}} =3.309[/tex]
[tex] (91-85) +2.79 *2.490 \sqrt{\frac{1}{12} +\frac{1}{15}} =8.691[/tex]