Answer:
[tex]t \approx 2.212\,s[/tex]
Explanation:
The height of the helicopter is given by this function:
[tex]h(t) = 3\cdot t^{3}[/tex]
The height at [tex]t = 2\,s[/tex] is:
[tex]h(2\,s)= 3\cdot (2\,s)^{3}[/tex]
[tex]h (2\,s) = 24\,m[/tex]
The mailbag experiments a free fall, whose equation is:
[tex]y = 24\,m -\frac{1}{2}\cdot (9.807\,\frac{m}{s^{2}} )\cdot t^{2}[/tex]
Time required before the mailbag reaches the ground is:
[tex]24\,m-\frac{1}{2}\cdot (9.807\,\frac{m}{s^{2}} )\cdot t^{2}=0[/tex]
The roots of the second-order polynomial are:
[tex]t_{1} \approx 2.212\,s[/tex]
[tex]t_{2} \approx - 2.212\,s[/tex]
Only the first root offers an physically reasonable solution. Then, the needed time is:
[tex]t \approx 2.212\,s[/tex]