Answer:
[tex]v = 186.90\,\frac{m}{s}[/tex]
Explanation:
The motion of ballistic pendulum is modelled by the appropriate use of the Principle of Energy Conservation:
[tex]\frac{1}{2}\cdot (m_{p}+m_{b})\cdot v^{2} = (m_{p}+m_{b})\cdot g \cdot h[/tex]
The final velocity of the system formed by the ballistic pendulum and the bullet is:
[tex]v = \sqrt{2\cdot g\cdot h}[/tex]
[tex]v = \sqrt{2\cdot (9.807\,\frac{m}{s^{2}} )\cdot (0.031\,m)}[/tex]
[tex]v\approx 0.78\,\frac{m}{s}[/tex]
Initial velocity of the bullet can be calculated from the expression derived of the Principle of Momentum:
[tex](0.0101\,kg)\cdot v = (2.41\,kg + 0.0101\,kg)\cdot (0.78\,\frac{m}{s} )[/tex]
[tex]v = 186.90\,\frac{m}{s}[/tex]