The rental cost of each movie and video game is $4.75 & $5.75 respectively .
Step-by-step explanation:
Here we have the following info: one month Lisa rented 3 movies and 5 video games for a total of $43. The next month she rented 9 movies and 7 video games for a total of $83. Let's form up linear equations for the following scenarios:
one month Lisa rented 3 movies and 5 video games for a total of $43:
Let rental cost of each movie and video game is $x & $y respectively . then
⇒ [tex]3x+5y=43[/tex] ... (1)
The next month she rented 9 movies and 7 video games for a total of $83:
⇒ [tex]9x+7y=83[/tex] ..... (2)
Let's solve equation (1) & (2) ..
Multiply (1) by 3 and subtract (1) , (2):
⇒ [tex]3(3x+5y)- (9x+7y) = 3(43) - 83[/tex]
⇒ [tex]15y-7y = 46[/tex]
⇒ [tex]8y = 46[/tex]
⇒ [tex]y = 5.75[/tex]
Putting value in equation (1):
⇒ [tex]3x+5y= 43[/tex]
⇒ [tex]3x+5(5.75)= 43[/tex]
⇒ [tex]x = 4.75[/tex]
∴ The rental cost of each movie and video game is $4.75 & $5.75 respectively .