Respuesta :
Answer:
The man will take 64 seconds to reach to the south shore of the frozen pond.
Step-by-step explanation:
Given:
Weight of the man = 748 N Mass of the man,[tex](m)= \frac{W}{g}[/tex] = [tex]\frac{748}{9.8}[/tex] = [tex]76.32[/tex] kg
Radius of the pond [tex](r)[/tex] = 4 m
Mass of the textbook = 1.2 kg
Velocity at which the textbook is thrown = 4 ms^1
We have to find the velocity of the man after the throw.
Let the velocity is [tex]V_m[/tex] .
Now using law of conservation of momentum we can find the [tex]V_m[/tex] value.
[tex]m_(_b_)V_b_(_i_) +m_(_m_)V_m_(_i_) =m_(_b_)V_b_(_f_)+m_(_m_) V_m_(_f_)[/tex]
Considering [tex]V_m_(_f_)=V_m[/tex]
And initial velocity of both the man and book i.e [tex]V_b_(_i_)=0,\ V_m_(i_)=0[/tex]
So,
⇒ [tex]0 =m_(_b_)V_b_(_f_)+m_(_m_) V_m[/tex]
⇒ Plugging the values.
⇒ [tex]V_m=-\frac{m_(_b_)V_b_(_f_)}{m_(_m_)}[/tex]
⇒ [tex]V_m=-\frac{1.2\times 4}{76.32}[/tex]
⇒ [tex]V_m=-0.062[/tex] ms^-1
Here the negative velocity is meant for opposite direction of the throw.
Numerically we will write, [tex]V_m = 0.062[/tex]
With this velocity the man will move towards south.
We have to calculate the time taken by the man to move to its south shore.
And we know [tex]velocity(v)\times time(t) = distance(d)[/tex]
Let the time taken be [tex]t[/tex] and [tex]v\times t = d[/tex] and [tex]d=r[/tex] then, [tex]V_m\times t=r[/tex]
Then
⇒ [tex]t=\frac{radius\ (r)}{V_m}[/tex]
⇒ Plugging the values.
⇒ [tex]t=\frac{4}{0.062}[/tex]
⇒ [tex]t =64[/tex] sec
The man will take 64 seconds to reach to the south shore of the frozen pond (circular).