Respuesta :
Answer:
- 0.0249% Sb/cm
[tex]-1.2465 * 10^9 \frac{atoms}{cm^3.cm}[/tex]
Explanation:
Given that:
One surface contains 1 Sb atom per 10⁸ Si atoms and the other surface contains 500 Sb atoms per 10⁸ Si atoms.
The concentration gradient in atomic percent (%) Sb per cm can be calculated as follows:
The difference in concentration = [tex]\delta_c[/tex]
The distance [tex]\delta_x[/tex] = 0.2-mm = 0.02 cm
Now, the concentration of silicon at one surface containing 1 Sb atom per 10⁸ silicon atoms and at the outer surface that has 500 Sb atom per 10⁸ silicon atoms can be calculated as follows:
[tex]\frac{\delta_c}{\delta_c} = \frac{(1/10^8 -500/10^8)}{0.02cm} *100%[/tex]
= - 0.0249% Sb/cm
b) The concentration [tex](c_1)[/tex] of Sb in atom/cm³ for the surface of 1 Sb atoms can be calculated by using the formula:
[tex]c_1 = \frac{(8 si atoms/unit cells)(1/10^3)}{(lattice parameter)^3/unit cell}[/tex]
Lattice parameter = 5.4307 Å; To cm ; we have
= [tex]5.4307A^0* \frac{10^{-8}cm}{ A^0}[/tex]
[tex]c_1 = \frac{(8 si atoms/unit cells)(1/10^8)}{(5.4307*10^{-8}cm)^3/unit cell}[/tex]
= [tex]0.00499*10^{17}atoms/cm^3[/tex]
The concentration [tex](c_2)[/tex] of Sb in atom/cm³ for the surface of 500 Sb can be calculated as follows:
[tex]c_1 = \frac{(8 si atoms/unit cells)(500/10^8)}{(5.4307*10^{-8}cm)^3/unit cell}[/tex]
= [tex]\frac{4*10^{-3}}{1.601*10^{-22}}[/tex]
= [tex]2.4938*10^{17}atoms/cm^3[/tex]
Finally, to calculate the concentration gradient
[tex](\frac{\delta _c}{\delta_ x}) = \frac{c_1-c_2}{\delta_x}[/tex]
[tex](\frac{\delta _c}{\delta_ x}) = \frac{0.00499*10^{17}-2.493*10^{17}}{0.02}[/tex]
[tex]= -1.2465 * 10^9 \frac{atoms}{cm^3.cm}[/tex]