Answer:
[tex]KE=1.2036\times 10^{-12}\ J[/tex]
Explanation:
Given:
During the motion of a charge the magnetic force and the centripetal forces are balanced:
[tex]q.v.B=m.\frac{v^2}{r}[/tex]
[tex]m.v=q.B.r[/tex]
where:
v = velocity of the alpha particle
[tex]v=\frac{q.B.r}{m}[/tex]
[tex]v=\frac{3.2\times 10^{-19}\times 0.5\times 0.5}{6.64\times 10^{-27}}[/tex]
[tex]v=1.2048\times 10^{7}\ m.s^{-1}[/tex]
Here we observe that the velocity of the aprticle is close to the velocity of light. So the kinetic energy will be relativistic.
We firstly find the relativistic mass as:
[tex]m'=\frac{1}{\sqrt{1-\frac{v^2}{c^2} } } \times m[/tex]
[tex]m'=\frac{6.64\times 10^{-27}}{\sqrt{1-\frac{(1.2048\times 10^7)^2}{(3\times 10^8)^2} } }[/tex]
[tex]m'=6.6533\times10^{-27}\ kg[/tex]
now kinetic energy:
[tex]KE=m'.c-m.c[/tex]
[tex]KE=6.6533\times 10^{-27}\times (3\times 10^8)^2-6.64\times 10^{-27}\times (3\times 10^8)^2[/tex]
[tex]KE=1.2036\times 10^{-12}\ J[/tex]