Answer: The volume of NaOH needed to add is 12.35 mL
Explanation:
To calculate the molarity of solution, we use the equation:
[tex]\text{Molarity of the solution}=\frac{\text{Mass of solute}\times 1000}{\text{Molar mass of solute}\times \text{Volume of solution (in mL)}}[/tex]
Given mass of sulfurous acid = 0.0865 g
Molar mass of sulfurous acid = 82.079 g/mol
Volume of solution = 250 mL
Putting values in above equation, we get:
[tex]\text{Molarity of sulfurous acid}=\frac{0.0865\times 1000}{82.079\times 250}\\\\\text{Molarity of sulfurous acid}=0.0042M[/tex]
To calculate the volume of base, we use the equation given by neutralization reaction:
[tex]n_1M_1V_1=n_2M_2V_2[/tex]
where,
[tex]n_1,M_1\text{ and }V_1[/tex] are the n-factor, molarity and volume of acid which is [tex]H_2SO_3[/tex]
[tex]n_2,M_2\text{ and }V_2[/tex] are the n-factor, molarity and volume of base which is NaOH.
We are given:
[tex]n_1=2\\M_1=0.0042M\\V_1=250mL\\n_2=1\\M_2=0.1700M\\V_2=?mL[/tex]
Putting values in above equation, we get:
[tex]2\times 0.0042\times 250=1\times 0.1700\times V_2\\\\V_2=\frac{2\times 0.0042\times 250}{1\times 0.1700}=12.35mL[/tex]
Hence, the volume of NaOH needed to add is 12.35 mL