Answer:
P(2.50 < Xbar < 2.66) = 0.046
Step-by-step explanation:
We are given that Population Mean, [tex]\mu[/tex] = 2.58 and Standard deviation, [tex]\sigma[/tex] = 0.75
Also, a random sample (n) of 110 households is taken.
Let Xbar = sample mean household size
The z score probability distribution for sample mean is give by;
Z = [tex]\frac{Xbar-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] ~ N(0,1)
So, probability that the sample mean household size is between 2.50 and 2.66 people = P(2.50 < Xbar < 2.66)
P(2.50 < Xbar < 2.66) = P(Xbar < 2.66) - P(Xbar [tex]\leq[/tex] 2.50)
P(Xbar < 2.66) = P( [tex]\frac{Xbar-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\frac{2.66-2.78}{\frac{0.75}{\sqrt{110} } }[/tex] ) = P(Z < -1.68) = 1 - P(Z [tex]\leq[/tex] 1.68)
= 1 - 0.95352 = 0.04648
P(Xbar [tex]\leq[/tex] 2.50) = P( [tex]\frac{Xbar-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] [tex]\leq[/tex] [tex]\frac{2.50-2.78}{\frac{0.75}{\sqrt{110} } }[/tex] ) = P(Z [tex]\leq[/tex] -3.92) = 1 - P(Z < 3.92)
= 1 - 0.99996 = 0.00004
Therefore, P(2.50 < Xbar < 2.66) = 0.04648 - 0.00004 = 0.046