Answer:
a. 3.039cm
b.magnetic field is [tex]B=2.958\times10^{-5}T[/tex]
Explanation:
Direction of the solenoid magnetic field is along the axis of the solenoid. and magnetic field due to the wire perpendicular to that due to the solenoid.. Magnetic field at r is given by:
[tex]\overrightarrow B = \overrightarrow B_s+ \overrightarrow B_w,\ \ \ \ \ \overrightarrow B_s\perp \overrightarrow B_w[/tex]
Angle of net magnetic field from axial direction is given by:
[tex]tan\ \theta=\frac{B_w}{B_s}[/tex],
Field due to solenoid:
[tex]B_s=\mu_onI_s, \ \ \ \ n=(8.22 t/cm)(100cm/m)=822turn/m[/tex]
Field due to wire:
[tex]B_w=\frac{\mu_oI_w}{2\pi r}[/tex]
Therefore, r:
[tex]tan\ \theta=\frac{B_w}{B_s}\\\\=\frac{\mu_oI_w}{2\pi r(\mu_o nI_s)}\\\\r=\frac{I_w}{2\pi nI_stan \ \theta}\\\\r=\frac{3.59A}{2\pi\times822\times19.4\times10^{-3}A \ tan 49.7\textdegree}\\\\r=3.039cm[/tex]
Hence, the radial distance is 3.039cm
b.The magnetic field strength is given by:
[tex]B=\sqrt{B_w^2+B_s^2}\\\\tan 49.7\textdegree=\frac{B_w}{B_s}\\\\1.179=\frac{B_w}{B_s}\\\\B_w=1.179B_s\\\\B=\sqrt{(4\pi\times10^{-7}T.m/A\times 822\times19.4\times10^{3}A)+1.179(4\pi\times10^{-7}T.m/A\times 822\times19.4\times10^{-3}A)}\\\\B=2.958\times10^{-5}T[/tex]
Hence, the magnetic field is [tex]B=2.958\times10^{-5}T[/tex]