Respuesta :
Answer:
(f + g)'(3) = 4
Step-by-step explanation:
If f(3) = -4, f'(3) = 4, g(3) = 2, and g'(3) = 0, find (f + g)'(3).
We should know that:
[f(x) + g(x)]' = f'(x) + g'(x)
So,
(f + g)'(3) = f'(3) + g'(3)
By substitution with f'(3) = 4 and g'(3) = 0
So,
(f + g)'(3) = f'(3) + g'(3)
= 4 + 0
∴ (f + g)'(3) = 4
