Respuesta :

First I found the area of the overall shape:

(x+8)(x+8)

I got:

x^2 + 16x + 64

Then I found the area of the inside shape:

2x * 2x

I got:  4x^2

Then I subtracted the inside shape from the total shape:

and I got:

-3x^2 + 16x + 64

The area of the shaded part is D [tex]-3x^{2} +16x+64[/tex] sq unit.

Step-by-step explanation:

Given,

The length of outer square = x+8 unit

The length of inner square = 2x unit

To find the area of the shaded part

Formula

The area of a square with each side a will be [tex]a^{2}[/tex] sq unit

[tex](a+b)^{2}= a^{2} + 2ab+b^{2}[/tex]

Now,

The area of the outer square = [tex](x+8)^{2}[/tex] sq unit

The area of the inner square = [tex](2x)^{2}[/tex] sq unit

Hence, the area of the shaded part =

[tex](x+8)^{2}[/tex]-[tex](2x)^{2}[/tex] sq unit =

[tex]x^{2} +16x+64 - 4x^{2} \\= -3x^{2} +16x+64[/tex] sq unit

ACCESS MORE