I need help on those 3 problems!
![I need help on those 3 problems class=](https://us-static.z-dn.net/files/d31/2bf3abef20bf2180bc940f267ee1f19b.png)
Answer:
Part 1)
a) [tex]AG=10\ units[/tex]
b) [tex]GD=5\ units[/tex]
c) [tex]CD=12\ units[/tex]
d) [tex]GE=6.5\ units[/tex]
e) [tex]GB=13\ units[/tex]
Part 2)
a) [tex]x=2[/tex]
b) [tex]x=2[/tex]
c) [tex]x=8[/tex]
Part 3)
a) The height of the truss is 12 units
b) The centroid of triangle DEF is 8 units down from D
Step-by-step explanation:
Part 1)
we know that
A centroid of a triangle is the point where the three medians of the triangle meet. A median of a triangle is a line segment from one vertex to the mid point on the opposite side of the triangle
The centroid divides each median in a ratio of 2:1
Part a) Find the length of the segment AG
we know that
[tex]AG=\frac{2}{3}AD[/tex] ---> the centroid divides each median in a ratio of 2:1
we have
[tex]AD=15\ units[/tex]
substitute
[tex]AG=\frac{2}{3}15=10\ units[/tex]
Part b) Find the length of the segment GD
we know that
[tex]GD=\frac{1}{3}AD[/tex] ---> the centroid divides each median in a ratio of 2:1
we have
[tex]AD=15\ units[/tex]
substitute
[tex]GD=\frac{1}{3}15=5\ units[/tex]
Part c) Find the length of the segment CD
we know that
In the right triangle CGD
Applying the Pythagorean Theorem
[tex]CG^2=GD^2+CD^2[/tex]
we have
[tex]CG=13\ units\\GD=5\ units[/tex]
substitute
[tex]13^2=5^2+CD^2[/tex]
[tex]CD^2=144\\CD=12\ units[/tex]
Part d) Find the length of the segment GE
we know that
[tex]CG=\frac{2}{3}CE[/tex] ---> the centroid divides each median in a ratio of 2:1
we have
[tex]CG=13\ units[/tex]
substitute
[tex]13=\frac{2}{3}CE[/tex]
[tex]CE=13(3)/2\\CE=19.5\ units[/tex]
Find the length of the segment GE
[tex]GE=\frac{1}{3}CE[/tex]
substitute
[tex]GE=\frac{1}{3}19.5\\GE=6.5\ units[/tex]
Part e) Find the length of the segment GB
we know that
In the right triangle GBD
Applying the Pythagorean Theorem
[tex]GB^2=GD^2+DB^2[/tex]
we have
[tex]GD=5\ units[/tex]
[tex]DB=CD=12\ units[/tex] ---> D is the midpoint segment CB
substitute
[tex]GB^2=5^2+12^2[/tex]
[tex]GB^2=169\\GB=13\ units[/tex]
Part 2) Point L is the centroid of triangle NOM
Find the value of x
Part a) we have
OL=8x and OQ=9x+6
we know that
[tex]OL=\frac{2}{3}OQ[/tex] ---> the centroid divides each median in a ratio of 2:1
substitute the given values
[tex]8x=\frac{2}{3}(9x+6)[/tex]
solve for x
[tex]24x=18x+12\\24x-18x=12\\6x=12\\x=2[/tex]
Part b) we have
NL=x+4 and NP=3x+3
we know that
[tex]NL=\frac{2}{3}NP[/tex] ---> the centroid divides each median in a ratio of 2:1
substitute the given values
[tex](x+4)=\frac{2}{3}(3x+3)[/tex]
solve for x
[tex]3x+12=6x+6\\6x-3x=12-6\\3x=6\\x=2[/tex]
Part c) we have
ML=10x-4 and MR=12x+18
we know that
[tex]ML=\frac{2}{3}MR[/tex] ---> the centroid divides each median in a ratio of 2:1
substitute the given values
[tex](10x-4)=\frac{2}{3}(12x+18)[/tex]
solve for x
[tex]30x-12=24x+36\\30x-24x=36+12\\6x=48\\x=8[/tex]
Part 3)
Part a) Find the altitude of the truss
Let
M ----> the midpoint of segment FE
DM ---> the altitude of the truss
Applying Pythagorean Theorem in the right triangle FDM
[tex]FD^2=FM^2+DM^2[/tex]
substitute the given values
[tex]15^2=9^2+DM^2[/tex]
[tex]DM^2=225-81\\DM^2=144\\DM=12\ units[/tex]
therefore
The height of the truss is 12 units
Part b) How far down from D is the centroid of triangle DEF?
we know that
[tex]DG=\frac{2}{3}DM[/tex] --> the centroid divides each median in a ratio of 2:1
substitute the value of DM
[tex]DG=\frac{2}{3}12=8\ units[/tex]