Respuesta :

Answer:

Part 1)

a) [tex]AG=10\ units[/tex]

b) [tex]GD=5\ units[/tex]

c) [tex]CD=12\ units[/tex]

d) [tex]GE=6.5\ units[/tex]

e) [tex]GB=13\ units[/tex]

Part 2)

a) [tex]x=2[/tex]

b) [tex]x=2[/tex]

c) [tex]x=8[/tex]

Part 3)

a) The height of the truss is 12 units

b) The centroid of triangle DEF is 8 units down from D

Step-by-step explanation:

Part 1)

we know that

A centroid of a triangle is the point where the three medians of the triangle meet. A median of a triangle is a line segment from one vertex to the mid point on the opposite side of the triangle

The centroid divides each median in a ratio of 2:1

Part a) Find the length of the segment AG

we know that

[tex]AG=\frac{2}{3}AD[/tex] ---> the centroid divides each median in a ratio of 2:1

we have

[tex]AD=15\ units[/tex]

substitute

[tex]AG=\frac{2}{3}15=10\ units[/tex]

Part b) Find the length of the segment GD

we know that

[tex]GD=\frac{1}{3}AD[/tex] ---> the centroid divides each median in a ratio of 2:1

we have

[tex]AD=15\ units[/tex]

substitute

[tex]GD=\frac{1}{3}15=5\ units[/tex]

Part c) Find the length of the segment CD

we know that

In the right triangle CGD

Applying the Pythagorean Theorem

[tex]CG^2=GD^2+CD^2[/tex]

we have

[tex]CG=13\ units\\GD=5\ units[/tex]

substitute

[tex]13^2=5^2+CD^2[/tex]

[tex]CD^2=144\\CD=12\ units[/tex]

Part d) Find the length of the segment GE

we know that

[tex]CG=\frac{2}{3}CE[/tex] ---> the centroid divides each median in a ratio of 2:1

we have

[tex]CG=13\ units[/tex]

substitute

[tex]13=\frac{2}{3}CE[/tex]

[tex]CE=13(3)/2\\CE=19.5\ units[/tex]

Find the length of the segment GE

[tex]GE=\frac{1}{3}CE[/tex]

substitute

[tex]GE=\frac{1}{3}19.5\\GE=6.5\ units[/tex]

Part e) Find the length of the segment GB

we know that

In the right triangle GBD

Applying the Pythagorean Theorem

[tex]GB^2=GD^2+DB^2[/tex]

we have

[tex]GD=5\ units[/tex]

[tex]DB=CD=12\ units[/tex] ---> D is the midpoint segment CB

substitute

[tex]GB^2=5^2+12^2[/tex]

[tex]GB^2=169\\GB=13\ units[/tex]

Part 2) Point L is the centroid of triangle NOM

Find the value of x

Part a) we have

OL=8x and OQ=9x+6

we know that

[tex]OL=\frac{2}{3}OQ[/tex] ---> the centroid divides each median in a ratio of 2:1

substitute the given values

[tex]8x=\frac{2}{3}(9x+6)[/tex]

solve for x

[tex]24x=18x+12\\24x-18x=12\\6x=12\\x=2[/tex]

Part b) we have

NL=x+4 and NP=3x+3

we know that

[tex]NL=\frac{2}{3}NP[/tex] ---> the centroid divides each median in a ratio of 2:1

substitute the given values

[tex](x+4)=\frac{2}{3}(3x+3)[/tex]

solve for x

[tex]3x+12=6x+6\\6x-3x=12-6\\3x=6\\x=2[/tex]

Part c) we have

ML=10x-4 and MR=12x+18

we know that

[tex]ML=\frac{2}{3}MR[/tex] ---> the centroid divides each median in a ratio of 2:1

substitute the given values

[tex](10x-4)=\frac{2}{3}(12x+18)[/tex]

solve for x

[tex]30x-12=24x+36\\30x-24x=36+12\\6x=48\\x=8[/tex]

Part 3)

Part a) Find the altitude of the truss

Let

M ----> the midpoint of segment FE

DM ---> the altitude of the truss

Applying Pythagorean Theorem in the right triangle FDM

[tex]FD^2=FM^2+DM^2[/tex]

substitute the given values

[tex]15^2=9^2+DM^2[/tex]

[tex]DM^2=225-81\\DM^2=144\\DM=12\ units[/tex]

therefore

The height of the truss is 12 units

Part b) How far down from D is the centroid of triangle DEF?

we know that

[tex]DG=\frac{2}{3}DM[/tex] --> the centroid divides each median in a ratio of 2:1

substitute the value of DM

[tex]DG=\frac{2}{3}12=8\ units[/tex]

ACCESS MORE