Respuesta :

Answer:

Option B, -4 and 4

Step-by-step explanation:

Step 1:  Subtract 15 from both sides

y^2 - 1 - 15 = 15 - 15

y^2 - 16 = 0

Step 2:  Factor

y^2 - 16

(y + 4)(y - 4)

Step 3:  Find the solutions

y + 4 - 4 = 0 - 4 and y - 4 + 4 = 0 + 4

y = -4 and y = 4

Answer:  Option B, -4 and 4

Answer:

-4 and 4

Step-by-step explanation:

All you need to do is solve for y

[tex]y^{2} - 1 = 15\\[/tex] (plus 1 to both sides)

[tex]y^{2} = 16[/tex] (take square root of 16)

[tex]y = \sqrt{16}[/tex]

[tex]y = +-4[/tex] (whenever you to the root of a perfect square you want the positive and negative root)

To double check if your answer is right: plug in -4 and +4 in as y and see if it equals 15

1. [tex](4)^{2} - 1 =15[/tex]

[tex]16-1 = 15\\15= 15[/tex]

(positive 4 checks out)

2. [tex](-4)^{2} - 1 = 15[/tex]

[tex]16 - 1 = 15\\15 = 15[/tex]

( negative 4 checks out)

ACCESS MORE