Respuesta :
Explanation:
pt1.
From the question,
m=2.35kg
F=21.6N
a=?
Given that,
[tex]F =ma[/tex], where F= force, m=mass and a= acceleration,.
By substitution we obtain,
[tex]21.6 = 2.35 \times a[/tex]
Dividing through by 2.35
[tex] \implies \frac{21.6}{2.35} = \frac{2.35 \times a}{2.35} [/tex]
[tex] \implies a = 9.19 \: {ms}^{ - 2} [/tex]
pt2.
2.From the question,
F=87.3 N and S= 2.04 m
Given that,
W=F×S
where
W=work done,
F=force,
and S=displacement
This implies that;
W=87.3×2.04
W=178.092J
3.
From the question,
P=267 W
W=1250 J
t=?
Given that, [tex]P= \frac{W}{t} [/tex]
where,
P=Power
W=work done, and
t= time
By substitution, we obtain
[tex]267 =\frac{1250}{t}[/tex]
cross multiplying we obtaion
[tex]267 \times t=1250[/tex]
Dividing through by 267, we get
[tex] \implies \frac{267 \times t}{267} = \frac{1250}{267} [/tex]
[tex]t = \frac{1250}{267} = 4.68s [/tex]
4.
From the question,
the mass of the rabbit, m=8.642 kg
Kinetic Energy,K.E of the rabbit =125.6 J
[tex]K. E = \frac{1}{2}m {v}^{2} [/tex]
where, m=mass and v=speed
By substitution, we get
[tex]125.6 = \frac{1}{2} \times 8.642 \times {v}^{2} [/tex]
[tex] \implies 125.6 \times 2= 8.642 \times {v}^{2} [/tex]
[tex] \implies251.2= 8.642 \times {v}^{2} [/tex]
Dividing through by 8.642.
[tex] \implies \frac{251.2}{8.642} = \frac{8.642 \times {v}^{2} }{8.642} [/tex]
Take positive square root of both sides
[tex] \implies v= \sqrt{ \frac{251.2}{8.642}} [/tex]
[tex]\implies v= 5.32{ms}^{-1}[/tex]
![Ver imagen kudzordzifrancis](https://us-static.z-dn.net/files/df6/048ff663caac26ec06c576778d13844a.jpg)
![Ver imagen kudzordzifrancis](https://us-static.z-dn.net/files/d02/2ab06d26c1fd72a1a4cd3f6239970a13.jpg)
![Ver imagen kudzordzifrancis](https://us-static.z-dn.net/files/d31/2393192a4ed6b1a8425566e8bbb8cfc7.jpg)