Answer:
Thus, the induced current in the coil at [tex]t =1.73s[/tex] is 9.98 A.
Explanation:
Faraday's law says
[tex]$\varepsilon = N \frac{d \Phi_B}{dt} $[/tex]
where [tex]N[/tex] is the number of turns and [tex]\Phi_B[/tex] is the magnetic flux through the square coil:
Now,
[tex]N = 30[/tex]
[tex]\theta = 37.5^o[/tex]
[tex]A = (0.341m)^2= 0.11623m^2[/tex]
[tex]B = 1.45t^3[/tex];
therefore,
[tex]$\varepsilon = N \frac{d \Phi_B}{dt} = N\frac{d ( BA\:cos(\theta))}{dt} = 30*\frac{d ( (1.45t^2)(0.1163)\:cos(37.5^o))}{dt}$[/tex]
[tex]=30*(0.1163)\:cos(37.5^o)*1.45*\dfrac{d ( t^3)}{dt} = 12.04t^2[/tex]
[tex]\boxed{\varepsilon = 12.04t^2}[/tex]
is the emf induced in the coil.
Now, the loop is connected to [tex]R = 3.61\Omega[/tex] resistance; therefore, at [tex]t = 1.73s[/tex]
[tex]\varepsilon = RI = 12.04t^2[/tex]
[tex]RI = 12.04(1.73)^2[/tex]
[tex]RI = 36.03[/tex]
[tex]I = \dfrac{36.03}{3.61\Omega }[/tex]
[tex]\boxed{I = 9.98A }[/tex]
Thus, the current in the coil at [tex]t =1.73s[/tex] is 9.98 A.