Hence the answer T = nU / 2 is proved.
Explanation:
U = kr^n
F = -dU / dr
= [tex]\frac{d}{dr} kr^{n}[/tex]
= [tex]- knr^{n-1}[/tex]
At equation this force is equal to centripetal force.
[tex]- knr^{n-1} = \frac{mv^{2} }{r}[/tex]
[tex]mv^{2} = nkr^{n}[/tex]
Total energy = 1/2 mv^2
= [tex]\frac{1}{2} nkr^{n}[/tex]
= [tex]n\frac{kr^{n} }{2}[/tex]
[tex]T= \frac{nU}{2}[/tex]