Respuesta :
Answer:
-0.55
Step-by-step explanation:
Quadratic Formula: [tex]\frac{-b\pm\sqrt({b^2}-4ac) }{2a}[/tex]
Case 1: [tex]\frac{-b+\sqrt({b^2}-4ac) }{2a}[/tex]
Substitute values:
[tex]\frac{-45+\sqrt({45^2}-4*3*24) }{2*3}[/tex]
[tex]\frac{-15+\sqrt{193} }{2}[/tex] = -0.55 (2dp) (Answer)
Case 2: [tex]\frac{-b-\sqrt({b^2}-4ac) }{2a}[/tex]
Substitute values:
[tex]\frac{-45-\sqrt({45^2}-4*3*24) }{2*3}[/tex]
[tex]-\frac{15+\sqrt{193}}{2}[/tex] = -14.45 (2dp)
Since x = -14.45 is known, the other solution is x = -0.55
The two solutions of the given quadratic equation will be -0.55 and -14.45.
What is a quadratic equation?
The polynomial having a degree of two or the maximum power of the variable in a polynomial will be 2 is defined as the quadratic equation and it will cut two intercepts on the graph at the x-axis.
The solution of the given equation will be calculated as:-
3x² + 45x + 24 = 0
a = 3, b = 45, and c =24
[tex]= \dfrac{-b^2\pm\sqrt{b^2-4ac}}{2a}[/tex]
[tex]=\dfrac{-45\pm\sqrt{45^2-(4\times 3\times 24)}}{(2\times 3}[/tex]
[tex]=\dfrac{-45\pm41.6}{6}[/tex]
[tex]=\dfrac{-45+41.6}{6}=-0.55[/tex]
[tex]=\dfrac{-45-41.6}{6}=-14.45[/tex]
Therefore two solutions of the given quadratic equation will be -0.55 and -14.45.
To know more about quadratic equations follow
https://brainly.com/question/1214333
#SPJ1