Answer:
[tex]y=-\frac{1}{4}x^2-\frac{3}{2}x+\frac{3}{4}[/tex]
Step-by-step explanation:
The standard form of a parabola is written as
[tex]y=ax^2+bx+c[/tex]
where a, b and c are the coefficients of the second-degree, first degree and zero-degree terms.
The coordinates of the vertex of a parabola is given by:
[tex]x_b = -\frac{b}{2a}[/tex]
[tex]y_b=c-\frac{b^2}{4a}[/tex]
The coordinates of the focus instead are given by
[tex]x_f=-\frac{b}{2a}[/tex]
[tex]y_f=y_b+\frac{1}{4a}[/tex]
In this problem, we know the coordinates of the vertex and of the focus point:
Vertex: (-3,3)
Focus point: (-3,2)
So we have:
[tex]x_b=-3=-\frac{b}{2a}[/tex] (1)
[tex]y_b=3=c-\frac{b^2}{4a}[/tex] (2)
[tex]y_f=2=y_b+\frac{1}{4a}[/tex] (3)
From eq.(1) we get
[tex]2a=\frac{b}{3}[/tex] (4)
Substituting into (2),
[tex]3=c-\frac{b^2}{2(b/3)}\\3=c-\frac{3}{2}b\\c=3+\frac{3}{2}b[/tex](5)
Now rewriting eq.(3) as
[tex]2=y_b+\frac{1}{4a}\\2=(c-\frac{3}{2}b)+\frac{1}{4a}[/tex]
And substituting (4) and (5) into this, we can find b:
[tex]2=((3+\frac{3}{2}b)-\frac{3}{2}b)+\frac{1}{2(b/3)}\\2=3+\frac{3}{2b}\\-1=\frac{3}{2b}\\b=-\frac{3}{2}[/tex]
Then we can find a and c:
[tex]2a=\frac{b}{3}\\a=\frac{b}{6}=\frac{-3/2}{6}=-\frac{1}{4}[/tex]
And
[tex]c=3+\frac{3}{2}b=3+\frac{3}{2}(-\frac{3}{2})=3-\frac{9}{4}=\frac{3}{4}[/tex]
So the parabola is
[tex]y=-\frac{1}{4}x^2-\frac{3}{2}x+\frac{3}{4}[/tex]