Respuesta :

Answer:

[tex]y=-\frac{1}{4}x^2-\frac{3}{2}x+\frac{3}{4}[/tex]

Step-by-step explanation:

The standard form of a parabola is written as

[tex]y=ax^2+bx+c[/tex]

where a, b and c are the coefficients of the second-degree, first degree and zero-degree terms.

The coordinates of the vertex of a parabola is given by:

[tex]x_b = -\frac{b}{2a}[/tex]

[tex]y_b=c-\frac{b^2}{4a}[/tex]

The coordinates of the focus instead are given by

[tex]x_f=-\frac{b}{2a}[/tex]

[tex]y_f=y_b+\frac{1}{4a}[/tex]

In this problem, we know the coordinates of the vertex and of the focus point:

Vertex: (-3,3)

Focus point: (-3,2)

So we have:

[tex]x_b=-3=-\frac{b}{2a}[/tex] (1)

[tex]y_b=3=c-\frac{b^2}{4a}[/tex] (2)

[tex]y_f=2=y_b+\frac{1}{4a}[/tex] (3)

From eq.(1) we get

[tex]2a=\frac{b}{3}[/tex] (4)

Substituting into (2),

[tex]3=c-\frac{b^2}{2(b/3)}\\3=c-\frac{3}{2}b\\c=3+\frac{3}{2}b[/tex](5)

Now rewriting eq.(3) as

[tex]2=y_b+\frac{1}{4a}\\2=(c-\frac{3}{2}b)+\frac{1}{4a}[/tex]

And substituting (4) and (5) into this, we can find b:

[tex]2=((3+\frac{3}{2}b)-\frac{3}{2}b)+\frac{1}{2(b/3)}\\2=3+\frac{3}{2b}\\-1=\frac{3}{2b}\\b=-\frac{3}{2}[/tex]

Then we can find a and c:

[tex]2a=\frac{b}{3}\\a=\frac{b}{6}=\frac{-3/2}{6}=-\frac{1}{4}[/tex]

And

[tex]c=3+\frac{3}{2}b=3+\frac{3}{2}(-\frac{3}{2})=3-\frac{9}{4}=\frac{3}{4}[/tex]

So the parabola is

[tex]y=-\frac{1}{4}x^2-\frac{3}{2}x+\frac{3}{4}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico