Respuesta :
Answer:
[tex]v=10\sqrt{2} \ m.s^{-1}[/tex]
Explanation:
Given:
- mass of the block, [tex]m=2\ kg[/tex]
- initial velocity of the block, [tex]u=20\ m.s^{-1}[/tex]
- unstretched length of the spring, [tex]x=1\ m[/tex]
- stiffness constant of the spring, [tex]k=100\ N.m^{-1}[/tex]
- instantaneous position of the spring, [tex]s=3\ m[/tex]
Now the change in length of the spring under the weight of the block:
[tex]\delta x=s-x[/tex]
[tex]\delta x=3-1[/tex]
[tex]\delta x= 2\ m[/tex]
Now the kinetic energy of the block when the spring is unstretched:
[tex]KE=\frac{1}{2}\times m.u^2[/tex]
[tex]KE=\frac{1}{2} \times 2\times 20^2[/tex]
[tex]KE=400\ J[/tex]
Now the spring potential energy of the spring when it is compressed:
[tex]PE=\frac{1}{2}\times k.\delta x^2[/tex]
[tex]PE=\frac{1}{2} \times 100\times 2^2[/tex]
[tex]P=200\ J[/tex]
Now the remaining part of the kinetic energy initially possessed by the body is the instantaneous kinetic energy of the block:
[tex]\Delta E=KE_f[/tex]
where:
[tex]\Delta E=[/tex] change in energy
[tex]KE_f=[/tex] final kinetic energy at the given instant
[tex]400-200=\frac{1}{2} \times m.v^2[/tex]
[tex]200=0.5\times 2\times v^2[/tex]
[tex]v=10\sqrt{2} \ m.s^{-1}[/tex]
Answer:
Explanation:
mass of block, m = 2 kg
initial velocity, u = 20 m/s
spring constant, K = 100 N/m
elongation, Δx = 3 - 1 = 2 m
Let v be the velocity when s = 3 m.
Use conservation of energy
[tex]\frac{1}{2}K\Delta x^{2}=\frac{1}{2}m(v^{2}-u^{2})[/tex]
100 x 2 x 2 = 2 x (v² - 400)
200 = v² - 400
v² = 600
v = 24.5 m/s