. The 2 kg block is given an initial velocity of 20m/s over the smooth rod (i.e. no friction is considered), when it is at A. If the spring has an unstretched length of 1 m and a stiff ness of k = 100 N/m, using conservation of energy determine the velocity of the block, when.s:3 m. g=9.81 nls2

Respuesta :

Answer:

[tex]v=10\sqrt{2} \ m.s^{-1}[/tex]

Explanation:

Given:

  • mass of the block, [tex]m=2\ kg[/tex]
  • initial velocity of the block, [tex]u=20\ m.s^{-1}[/tex]
  • unstretched length of the spring, [tex]x=1\ m[/tex]
  • stiffness constant of the spring, [tex]k=100\ N.m^{-1}[/tex]
  • instantaneous position of the spring,  [tex]s=3\ m[/tex]

Now the change in length of the spring under the weight of the block:

[tex]\delta x=s-x[/tex]

[tex]\delta x=3-1[/tex]

[tex]\delta x= 2\ m[/tex]

Now the kinetic energy of the block when the spring is unstretched:

[tex]KE=\frac{1}{2}\times m.u^2[/tex]

[tex]KE=\frac{1}{2} \times 2\times 20^2[/tex]

[tex]KE=400\ J[/tex]

Now the spring potential energy of the spring when it is compressed:

[tex]PE=\frac{1}{2}\times k.\delta x^2[/tex]

[tex]PE=\frac{1}{2} \times 100\times 2^2[/tex]

[tex]P=200\ J[/tex]

Now the remaining part  of the kinetic energy initially possessed by the body is the instantaneous kinetic energy of the block:

[tex]\Delta E=KE_f[/tex]

where:

[tex]\Delta E=[/tex] change in energy

[tex]KE_f=[/tex] final kinetic energy at the given instant

[tex]400-200=\frac{1}{2} \times m.v^2[/tex]

[tex]200=0.5\times 2\times v^2[/tex]

[tex]v=10\sqrt{2} \ m.s^{-1}[/tex]

Answer:

Explanation:

mass of block, m = 2 kg

initial velocity, u = 20 m/s

spring constant, K = 100 N/m

elongation, Δx = 3 - 1 = 2 m

Let v be the velocity when s = 3 m.  

Use conservation of energy

[tex]\frac{1}{2}K\Delta x^{2}=\frac{1}{2}m(v^{2}-u^{2})[/tex]

100 x 2 x 2 = 2 x (v² - 400)

200 = v² - 400

v² = 600

v = 24.5 m/s

Otras preguntas

ACCESS MORE
EDU ACCESS