Answer:
Part A. [tex]2.66 \times 10^{-11}\text{ F}[/tex]
Part B. [tex]5.32\times 10^{-9}\text{ C}[/tex]
Part C. [tex]5.32\times 10^{-7}\text{ J}[/tex]
Explanation:
Part A
The capacitance of a parallel-plate capacitor is given by
[tex]C = \dfrac{\epsilon A}{d}[/tex]
A is the area of the plates, d is the separation distance and ∈ is the permittivity of the material between the plates.
∈ is given as [tex]\epsilon_r\epsilon_0[/tex]
[tex]\epsilon_r[/tex] is the dielectric constant and [tex]\epsilon_0[/tex] is the permittivity of free space with a value of [tex]8.854 \times 10^{-12} \text{ F/m}[/tex].
Hence,
[tex]C = \dfrac{4.00\times(8.854\times10^{-12}\text{ F/m})\times(15.0\times10^{-4} \text{ m}^2)}{0.2\times 10^{-2} \text{ m}} = 2.66 \times 10^{-11}\text{ F}[/tex]
Part B
The charge, Q, on a capacitor is given by Q = CV
where V is its voltage and C its capacitance.
[tex]Q = (2.66 \times 10^{-11}\text{ F})\times(200\text{ V}) = 5.32\times 10^{-9}\text{ C}[/tex]
Part C
The energy of a capacitor is given by
[tex]E = \frac{1}{2}QV[/tex]
[tex]E = \frac{1}{2} \times (5.32\times10^{-9}\text{ C})\times (200\text{ V}) = 5.32\times10^{-7}\text{ J}[/tex]