Respuesta :
Explanation:
According to Ficks first law, the relation between diffusion flux and diffusion coefficient is as follows.
J = [tex]-D \frac{dC}{dx}[/tex]
where, D = function of temperature
D = [tex]D_{e} exp (\frac{-Q_{d}}{RT})[/tex]
where, [tex]D_{e}[/tex] = pre-exponential independent of temperature
(a) Substituting the given values into the above formula, we will calculate the value of D as follows.
D = [tex]D_{e} exp (\frac{-Q_{d}}{RT})[/tex]
= [tex]1.1 \times 10^{-6} m^{2}/s exp (\frac{-80 \times 10^{3} J/mol}{8.314 J/mol \times 1273 K})[/tex]
= [tex]1.1 \times 10^{-6} m^{2}/s exp (\frac{-80 \times 10^{3} J/mol}{8.314 J/mol \times 1273 K})[/tex]
= [tex]1.1 \times 10^{-6} \times 1.007[/tex]
= [tex]1.108 \times 10^{-6} m^{2}/s[/tex]
Therefore, diffusion coefficient for the inter-diffusion of carbon in [tex]\alpha[/tex]-iron is [tex]1.108 \times 10^{-6} m^{2}/s[/tex].
(b) For [tex]\gamma[/tex]-iron we will calculate the value of D as follows.
D = [tex]D_{e} exp (\frac{-Q_{d}}{RT})[/tex]
= [tex]2.3 \times 10^{-5} m^{2}/s exp (\frac{-148 \times 10^{3} J/mol}{8.314 J/mol \times 1273 K})[/tex]
= [tex]2.3 \times 10^{-5} \times exp(-13.9)[/tex]
= [tex]2.3 \times 10^{-5} \times 9.189 \times 10^{-7}[/tex]
= [tex]2.113 \times 10^{-12} m^{2}/s[/tex]
Therefore, diffusion coefficient for the inter-diffusion of carbon in [tex]\gamma[/tex]-iron is [tex]2.113 \times 10^{-12} m^{2}/s[/tex].
Otras preguntas
