Answer:
Therefore the required quadratic polynomial is
[tex]f(t)=\frac{5}{3} -13t +\frac{17}{3} t^2[/tex]
Step-by-step explanation:
Given quadratic function is
[tex]f(t)=c_0+c_1t+c_2t^2[/tex]
Given data (0,-5), (1,5) , (2,-3) and (3,11)
Its means f(0)= -5, f(1)= 5, f(2) = -3 and f(3)=11
[tex]c_0+0.c_1+0.c_2= -5[/tex]
[tex]c_0+1.c_1+1^2.c_2= 5[/tex]
[tex]c_0+2.c_1+2^2.c_2= -3[/tex]
[tex]c_0+3.c_1+3^2.c_2= 11[/tex]
Let
[tex]A=\left[\begin{array}{ccc}1&0&0\\1&1&1\\1&2&4\\1&3&9\end{array}\right][/tex] , [tex]\vec B=\left[\begin{array}{c}-5\\5\\-3\\11\end{array}\right][/tex] and [tex]\vec x=\left[\begin{array}{ccc}c_0\\c_1\\c_2\end{array}\right][/tex]
We can write this system as [tex]A\vec x=\vec B[/tex]
Since
[tex]rref A=\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\\0&0&0\end{array}\right][/tex]
we have ,ker A= {0}
[tex]A^T=\left[\begin{array}{cccc}1&1&1&1\\0&1&2&3\\0&1&4&2\end{array}\right][/tex]
[tex]\vec x = (A^TA)^{-1}(A^T\vec B)[/tex]
[tex]=\left( \left[\begin{array}{cccc}1&1&1&1\\0&1&2&3\\0&1&4&2\end{array}\right]\left[\begin{array}{ccc}1&0&0\\1&1&1\\1&2&4\\1&3&9\end{array}\right]\right)^{-1} \left(\left[\begin{array}{cccc}1&1&1&1\\0&1&2&3\\0&1&4&2\end{array}\right]\left[\begin{array}{c}-5\\5\\-3\\11\end{array}\right] \right)[/tex]
[tex]=\left(\left[\begin{array}{ccc}4&6&14\\6&14&36\\7&15&35\end{array}\right] \right)^{-1}\left[\begin{array}{c}8\\32\\15\end{array}\right][/tex]
[tex]=\left[\begin{array}{ccc}\frac{5}{6}&0&-\frac{1}{3}\ \\-\frac{7}{10} &-\frac{7}{10}&1\\\frac{2}{15} &\frac{3}{10} &-\frac{1}{3}\end{array}\right] \left[\begin{array}{c}8\\32\\15\end{array}\right][/tex]
[tex]=\left[\begin{array}{c}\frac{5}{3} \\-13\\\frac{17}{3} \end{array}\right][/tex]
Therefore[tex]c_0=\frac{5}{3} , c_1=-13 \ and \ c_2=\frac{17}{3}[/tex]
Putting the values of [tex]c_0, c_1 \ and \ c_2[/tex] in the given quadratic equation
[tex]f(t)=\frac{5}{3} -13t +\frac{17}{3} t^2[/tex]
Therefore the required quadratic polynomial is
[tex]f(t)=\frac{5}{3} -13t +\frac{17}{3} t^2[/tex]