Answer:
ΔL=0.14m
Explanation:
The period of oscillations of simple pendulum is
[tex]T=2\pi \sqrt{\frac{L}{g} } \\[/tex]
Here L is length of pendulum and g is acceleration due to gravity
So the length of pendulum is:
[tex]L=\frac{T^{2}g }{4 \pi^{2} }\\[/tex]
So increase in length is:
ΔL=L₂-L₁
[tex]=\frac{T_{2}^{2}g }{4 \pi^{2} }-\frac{T_{1}^{2}g }{4 \pi^{2} }\\=\frac{g}{4 \pi^{2} }[T_2^{2} -T_1^{2} ]\\ =\frac{9.8}{4 \pi^{2}}[(1.15+0.22)^{2}-(1.15)^{2} ] \\=0.14m[/tex]
ΔL=0.14m