We want to calculate the concentrations of all species in a 0.58 M Na 2 SO 3 (sodium sulfite) solution. The ionization constants for sulfurous acid are K a1 = 1.4 × 10 − 2 and K a2 = 6.3 × 10 − 8 . Let's start by first calculating the concentration of the spectator ion.

Respuesta :

Explanation:

Reaction equation is as follows.

      [tex]Na_{2}SO_{3}(s) \rightarrow 2Na^{+}(aq) + SO^{2-}_{3}(aq)[/tex]

Here, 1 mole of [tex]Na_{2}SO_{3}[/tex] produces 2 moles of cations.

[tex][Na^{+}] = 2[Na_{2}SO_{3}] = 2 \times 0.58[/tex]

                                  = 1.16 M

[tex][SO^{2-}_{3}] = [Na_{2}SO_{3}][/tex] = 0.58 M

The sulphite anion will act as a base and react with [tex]H_{2}O[/tex] to form [tex]HSO^{-}_{3}[/tex] and [tex]OH^{-}[/tex].

As,     [tex]K_{b} = \frac{K_{w}}{K_{a_{2}}}[/tex]

                       = [tex]\frac{10^{-14}}{6.3 \times 10^{-8}}[/tex]

                       = [tex]1.59 \times 10^{-7}[/tex]

According to the ICE table for the given reaction,

          [tex]SO^{2-}_{3} + H_{2}O \rightleftharpoons HSO^{-}_{3} + OH^{-}[/tex]

Initial:        0.58             0              0

Change:     -x               +x             +x

Equilibrium: 0.58 - x     x               x

So,

        [tex]K_{b} = \frac{[HSO^{-}_{3}][OH^{-}]}{[SO^{2-}_{3}]}[/tex]

 [tex]1.59 \times 10^{-7} = \frac{x^{2}}{0.58 - x}[/tex]

        [tex]x^{2} = 1.59 \times 10^{-7} \times (0.58 - x)[/tex]

                x = 0.0003 M

So,   x = [tex][HSO^{-}_{3}] = [OH^{-}][/tex] = 0.0003 M

[tex][SO^{2-}_{3}][/tex] = 0.58 - 0.0003

                     = 0.579 M

Now, we will use [tex][HSO^{-}_{3}][/tex] = 0.0003 M

The reaction will be as follows.

              [tex]HSO^{2-}_{3} + H_{2}O \rightleftharpoons H_{2}SO_{3} + OH^{-}[/tex]

Initial:   0.0003

Equilibrium:  0.0003 - x        x             x

              [tex]K_{b} = \frac{x^{2}}{0.0003 - x}[/tex]

        [tex]K_{b} = \frac{K_{w}}{K_{a_{1}}}[/tex]

                      = [tex]\frac{10^{-14}}{1.4 \times 10^{-2}}[/tex]

                      = [tex]7.14 \times 10^{-13}[/tex]

Therefore,  [tex]7.14 \times 10^{-13} = \frac{x^{2}}{0.0003 - x}[/tex]

As,  x <<<< 0.0003. So, we can neglect x.

Therefore,  [tex]x^{2} = 7.14 \times 10^{-13} \times 0.0003[/tex]

                              = [tex]0.00214 \times 10^{-13}[/tex]

                     x = [tex]0.0146 \times 10^{-6}[/tex]

x = [tex][OH^{-}] = [H_{2}SO_{3}][/tex] = [tex]1.46 \times 10^{-8}[/tex]

    [tex][H^{+}] = \frac{10^{-14}}{[OH^{-}]}[/tex]

                = [tex]\frac{10^{-14}}{0.0003}[/tex]

                = [tex]3.33 \times 10^{-11}[/tex] M

Thus, we can conclude that the concentration of spectator ion is [tex]3.33 \times 10^{-11}[/tex] M.

RELAXING NOICE
Relax