Respuesta :
Answer:
Explanation:
a ) When the box starts to slip
static friction = mg sinα
mg cosα x μ = mg sinα ( μ is coefficient of static friction )
Tanα = μ = .35
α = 19.2°
b ) Once box starts moving , kinetic friction will start applying on it
kinetic friction = mg cos19.2 x .25
= 2.31m
net force downward = mgsin19.2 - mgcos19.2 x .25
= m ( 3.22 - 2.31 )
= .91 m
acceleration downward ( a ) = .91 m / s²
c )
v² = u² + 2 a s
= 0 + 2 x .91 x 5
= 9.1
v = 3 m / s
(a) The angle will be "19.2°".
(b) The acceleration will be "0.91 m/s²".
(c) The speed will be "3 m/s".
According to the question,
- Mass = 25.0 kg
- Kinetic friction = 0.25
- Coefficient of static friction = 0.35
(a)
We know,
→ [tex]Static \ friction = mg \ Sin \alpha[/tex]
→ [tex]mg Cos \alpha\times \mu = mg Sin \alpha[/tex]
then,
→ [tex]Tan \alpha = \mu = 0.35[/tex]
[tex]\alpha = 19.2^{\circ}[/tex]
(b)
Kinetic friction = [tex]mg Cos 19.2^{\circ}\times 0.25[/tex]
= [tex]2.31 \ m[/tex]
and,
Net force downwards = [tex]mgSin 19.2^{\circ} - mg Cos 19.2\times 0.25[/tex]
By substituting the values, we get
= [tex]m (3.22-2.31)[/tex]
= [tex]0.91 \ m/s^2[/tex]
(c)
The speed will be:
→ [tex]v^2 = u^2 +2as[/tex]
[tex]= 0+2\times 0.91\times 5[/tex]
[tex]= 9.1[/tex]
[tex]v = 3 m/s[/tex]
Thus the responses above answer correct.
Learn more about acceleration here:
https://brainly.com/question/24126513
Otras preguntas
