Answer:
[tex]32[/tex] [tex]or~2^5[/tex]
Step-by-step explanation:
→ [tex](2^3)(2^2)[/tex]
[tex]=2^3*2^2[/tex]
[tex]=(2*2*2)*(2*2)[/tex]
[tex]=2*2*2*2*2[/tex]
[tex]=32[/tex]
You can also put this in another way:
[tex]2^5=2^3*2^2=2^3^+^2=2^5[/tex]
[tex]2^{3}\cdot 2^{2}=2^{3+2}=2^{5}\\\\because\\\\a^{x}\cdot a^{y}=a^{x+y}[/tex]