Respuesta :

Angle A = 36.87°.

Solution:

Given data:

The side opposite to angle A is a.

The side opposite to angle B is b.

The side opposite to angle C is c.

a = 6, b = 8, c = 10

Using law of cosine:

[tex]a^{2}=b^{2}+c^{2}-2 b c \cos A[/tex]

Substitute the given values in the formula,

[tex]6^{2}=8^{2}+10^{2}-2\times 8 \times 10 \cos A[/tex]

[tex]36=64+100-160 \cos A[/tex]

[tex]36=164-160 \cos A[/tex]

Subtract 164 from both sides of the equation.

[tex]-128=-160 \cos A[/tex]

Divide by –160 on both sides of the equation.

[tex]$\frac{-128}{-160} =\frac{-160 }{-160 } \cos A[/tex]

[tex]$\frac{4}{5} =\cos A[/tex]

Switch the sides.

[tex]$\cos A=\frac{4}{5}[/tex]

[tex]$ A=\cos^{-1}\left(\frac{4}{5}\right)[/tex]

A = 36.87°

Hence angle A = 36.87°.

RELAXING NOICE
Relax