Respuesta :
Answer:
Assuming that both helium and argon act like ideal gases, the total pressure after mixing would be approximately [tex]229\; \rm mmHg[/tex].
Explanation:
By the ideal gas equation, [tex]P\cdot V = n \cdot R \cdot T[/tex], where
- [tex]P[/tex] is the pressure of the sample.
- [tex]V[/tex] is the volume of the container.
- [tex]n[/tex] is the number of moles of gas particles in the sample.
- [tex]R[/tex] is the ideal gas constant.
- [tex]T[/tex] is the temperature of the sample.
Rewrite to obtain:
- [tex]\displaystyle n = \frac{P \cdot V}{R\cdot T}[/tex], and
- [tex]\displaystyle P = \frac{n \cdot R \cdot T}{V}[/tex].
Assume that the two samples have the same temperature, [tex]T[/tex]. Also, assume that mixing the two gases did not affect the temperature.
Apply the equation [tex]\displaystyle n = \frac{P \cdot V}{R\cdot T}[/tex] to find the number of moles of gas particles in each container:
- In the helium container, [tex]V = 3.0\; \rm L[/tex] and [tex]P = \rm 145\; mmHg[/tex]. Hence, [tex]\displaystyle n_1 = \frac{P\cdot V}{R \cdot T} = \frac{(3.0\; \text{L}) \cdot (145\; \text{mmHg})}{R\cdot T}[/tex].
- In the argon container, [tex]V = 2.0\; \rm L[/tex] and [tex]P = 355\; \rm mmHg[/tex]. Hence, [tex]\displaystyle n_2 = \frac{P\cdot V}{R \cdot T} = \frac{(2.0\; \text{L}) \cdot (355\; \text{mmHg})}{R\cdot T}[/tex].
After mixing, [tex]V = 2.0 + 3.0 = 5.0\; \rm L[/tex]. Assuming that temperature [tex]T[/tex] stays the same.
[tex]\displaystyle n_1 + n_2 = \frac{(3.0\; \text{L}) \cdot (145\; \text{mmHg})}{R\cdot T} + \frac{(2.0\; \text{L}) \cdot (355\; \text{mmHg})}{R\cdot T}[/tex].
Apply the equation [tex]\displaystyle P = \frac{n \cdot R \cdot T}{V}[/tex] to find the pressure after mixing.
[tex]\begin{aligned}P &= \displaystyle \frac{\displaystyle \displaystyle \left(\frac{(3.0\; \text{L}) \cdot (145\; \text{mmHg})}{R\cdot T} + \frac{(2.0\; \text{L}) \cdot (355\; \text{mmHg})}{R\cdot T}\right) \cdot R \cdot T}{5.0\; \rm L} \\ &= \frac{3.0\; \rm L \times 145\; \rm mmHg + 2.0\; \rm L \times 355\; \rm mmHg}{5.0\; \rm L} \\ &\approx 229\; \rm mmHg\end{aligned}[/tex].
Answer:
The total pressure is 229 atm
Explanation:
Step 1: Data given
Volume of helium flask = 3.0 L
Pressure helium flask = 145 mm Hg
Volume of argon flask = 2.0 L
Pressure argon flask = 355 mmHg
total volume = 5.0 L
Step 2: Partial pressure helium
pHe = 145 *(3/5) = 87.0 atm
Step 3: Calculate pressure argon
pAr = 355*(2/5) = 142.0 atm
Step 4: Calculate total pressure
Total pressure = 87.0 + 142.0 atm
Total pressure = 229 atm
The total pressure is 229 atm
Otras preguntas
