Respuesta :

In order to solve equations like

[tex]ax^4+bx^2+c=0[/tex]

we have to set up the auxiliary variable [tex]t=x^2[/tex]

and the equation becomes a standard quadratic equation.

In your case, we have

[tex]x^4-40x^2+144=0 \iff t^2-40t+144=0[/tex]

The solutions to this equation is given by

[tex]t_{1,2}=\dfrac{40\pm\sqrt{1600-576}}{2}=\dfrac{40\pm\sqrt{1024}}{2}=\dfrac{40\pm 32}{2}=20\pm 16[/tex]

So, the two solutions are

[tex]t_1=20+16=36,\quad t_2=20-16=4[/tex]

Now recall that [tex]t=x^2[/tex] to solve for [tex]x[/tex]:

[tex]t=36 \implies x^2=36 \iff x=\pm 6,\quad t=4 \implies x^2=4 \iff x=\pm 2[/tex]

So, the four solutions are

[tex]x_1=-4,\quad x_2=-2,\quad x_3=2,\quad x_4=4[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico