Answer:
(a) the inductance of each conductor due to internal flux linkages only is 0.05 mH/km per conductor
(b) the inductance of each conductor due to both internal and external flux linkage is 0.8894 mH/km
(c) the total inductance of the line is 1.78 mH/km per circuit
Explanation:
(a) the inductance of each conductor due to internal flux linkages only [tex]L_{int}[/tex]
[tex]L_{int} = \frac{1}{2} * 10^{-7} H/m = \frac{1}{2} * 10^{-7} H/M (\frac{1000mH}{1H})(\frac{1000m}{1km} ) = 0.05 mH/km[/tex] per conductor.
(b) the inductance of each conductor due to both internal and external flux linkage is given by
[tex]L_{x} =L_{y} = 2*10^{-7}*ln(\frac{D}{r^'} } ) H/m[/tex]
but [tex]r^{'} = e^{\frac{-1}{4 }}*\frac{d}{2} }[/tex]
where D is the spacing between conductors = 0.5 m
d = diameter=1.5 cm= 0.015 m
[tex]r^{'} = e^{\frac{-1}{4 }}*\frac{0.015}{2} }=0.00584[/tex]
[tex]L_{x} =L_{y} = 2*10^{-7}*ln(\frac{0.5}{0.00584} } ) =(8.8994*10^{-7} ) H/m= 8.8994*10^{-7} * 1000mH*1000km=0.8894 mH/km[/tex]
[tex]L_{x} =L_{y} = 0.8894 mH/km[/tex] per conductor
(c) the total inductance of the line L
[tex]L=L_{x} + L_{y} =0.8894+0.8894=1.7788mH/km[/tex]
L≅ 1.780 mH/km per circuit