Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy = 0, y(1) = 1 Let ∂f ∂x = (x + y)2 = x2 + 2xy + y2. Integrate each term of this partial derivative with respect to x, letting h(y) be an

Respuesta :

[tex](x+y)^2\,\mathrm dx+(2xy+x^2-2)\,\mathrm dy=0[/tex]

Suppose the ODE has a solution of the form [tex]F(x,y)=C[/tex], with total differential

[tex]\dfrac{\partial F}{\partial x}\,\mathrm dx+\dfrac{\partial F}{\partial y}\,\mathrm dy=0[/tex]

This ODE is exact if the mixed partial derivatives are equal, i.e.

[tex]\dfrac{\partial^2F}{\partial y\partial x}=\dfrac{\partial^2F}{\partial x\partial y}[/tex]

We have

[tex]\dfrac{\partial F}{\partial x}=(x+y)^2\implies\dfrac{\partial^2F}{\partial y\partial x}=2(x+y)[/tex]

[tex]\dfrac{\partial F}{\partial y}=2xy+x^2-2\implies\dfrac{\partial^2F}{\partial x\partial y}=2y+2x=2(x+y)[/tex]

so the ODE is indeed exact.

Integrating both sides of

[tex]\dfrac{\partial F}{\partial x}=(x+y)^2[/tex]

with respect to [tex]x[/tex] gives

[tex]F(x,y)=\dfrac{(x+y)^3}3+g(y)[/tex]

Differentiating both sides with respect to [tex]y[/tex] gives

[tex]\dfrac{\partial F}{\partial y}=2xy+x^2-2=(x+y)^2+\dfrac{\mathrm dg}{\mathrm dy}[/tex]

[tex]\implies x^2+2xy-2=x^2+2xy+y^2+\dfrac{\mathrm dg}{\mathrm dy}[/tex]

[tex]\implies\dfrac{\mathrm dg}{\mathrm dy}=-y^2-2[/tex]

[tex]\implies g(y)=-\dfrac{y^3}3-2y+C[/tex]

[tex]\implies F(x,y)=\dfrac{(x+y)^3}3-\dfrac{y^3}3-2y+C[/tex]

so the general solution to the ODE is

[tex]F(x,y)=\dfrac{(x+y)^3}3-\dfrac{y^3}3-2y=C[/tex]

Given that [tex]y(1)=1[/tex], we find

[tex]\dfrac{(1+1)^3}3-\dfrac{1^3}3-2=C\implies C=\dfrac13[/tex]

so that the solution to the IVP is

[tex]F(x,y)=\dfrac{(x+y)^3}3-\dfrac{y^3}3-2y=\dfrac13[/tex]

[tex]\implies\boxed{(x+y)^3-y^3-6y=1}[/tex]

RELAXING NOICE
Relax