Respuesta :
[tex](x+y)^2\,\mathrm dx+(2xy+x^2-2)\,\mathrm dy=0[/tex]
Suppose the ODE has a solution of the form [tex]F(x,y)=C[/tex], with total differential
[tex]\dfrac{\partial F}{\partial x}\,\mathrm dx+\dfrac{\partial F}{\partial y}\,\mathrm dy=0[/tex]
This ODE is exact if the mixed partial derivatives are equal, i.e.
[tex]\dfrac{\partial^2F}{\partial y\partial x}=\dfrac{\partial^2F}{\partial x\partial y}[/tex]
We have
[tex]\dfrac{\partial F}{\partial x}=(x+y)^2\implies\dfrac{\partial^2F}{\partial y\partial x}=2(x+y)[/tex]
[tex]\dfrac{\partial F}{\partial y}=2xy+x^2-2\implies\dfrac{\partial^2F}{\partial x\partial y}=2y+2x=2(x+y)[/tex]
so the ODE is indeed exact.
Integrating both sides of
[tex]\dfrac{\partial F}{\partial x}=(x+y)^2[/tex]
with respect to [tex]x[/tex] gives
[tex]F(x,y)=\dfrac{(x+y)^3}3+g(y)[/tex]
Differentiating both sides with respect to [tex]y[/tex] gives
[tex]\dfrac{\partial F}{\partial y}=2xy+x^2-2=(x+y)^2+\dfrac{\mathrm dg}{\mathrm dy}[/tex]
[tex]\implies x^2+2xy-2=x^2+2xy+y^2+\dfrac{\mathrm dg}{\mathrm dy}[/tex]
[tex]\implies\dfrac{\mathrm dg}{\mathrm dy}=-y^2-2[/tex]
[tex]\implies g(y)=-\dfrac{y^3}3-2y+C[/tex]
[tex]\implies F(x,y)=\dfrac{(x+y)^3}3-\dfrac{y^3}3-2y+C[/tex]
so the general solution to the ODE is
[tex]F(x,y)=\dfrac{(x+y)^3}3-\dfrac{y^3}3-2y=C[/tex]
Given that [tex]y(1)=1[/tex], we find
[tex]\dfrac{(1+1)^3}3-\dfrac{1^3}3-2=C\implies C=\dfrac13[/tex]
so that the solution to the IVP is
[tex]F(x,y)=\dfrac{(x+y)^3}3-\dfrac{y^3}3-2y=\dfrac13[/tex]
[tex]\implies\boxed{(x+y)^3-y^3-6y=1}[/tex]
