Answer:
The minimum area of the top surface of a slab of ice is 45.8 m²
Explanation:
Given that,
Thickness = 0.30 m
Mass of car = 1100 kg
Density of water [tex]\rho_{w}=1.0\times10^{3}\ kg/m^3[/tex]
Density of ice [tex]\rho_{i}=0.92\times10^{3}\ kg/m^3[/tex]
We need to calculate the minimum area of the top surface of a slab of ice
Using Buoyant force force
Total weight of car + ice weight = weight of water displaced
[tex]W_{c}+A\times t\times\rho_{i}\times g=\rho\times A\times t\times g[/tex]
Put the value into the formula
[tex]1100\times g+0.30\times A\times0.92\times10^{3}\times g=1.0\times10^{3}\times A\times0.30\times g[/tex]
[tex](1100+A\times0.30\times0.92\times10^{3})g=1.0\times10^{3}\times A\times0.30\times g[/tex]
[tex]1100+276 A=300A[/tex]
[tex]A=\dfrac{1100}{24}[/tex]
[tex]A=45.8\ m^2[/tex]
Hence, The minimum area of the top surface of a slab of ice is 45.8 m²