A glass plate 3.45 mm thick, with an index of refraction of 1.60, is placed between a point source of light with wavelength 500 nm (in vacuum) and a screen. The distance from source to screen is 2.05 cm. How many wavelengths are there between the source and the screen?

Respuesta :

Answer:

[tex]4.51\times 10^4[/tex]

Explanation:

We are given that

Thickness of glass plate=3.45 mm=[tex]3.45\times 10^{-3}m[/tex]

Using [tex] 1mm=10^{-3} m[/tex]

Refractive index=[tex]n=1.6[/tex]

Wavelength in air, [tex]\lambda_0=500nm=500\times 10^{-9} m[/tex]

[tex]1 nm=10^{-9} m[/tex]

Distance from source to screen=d=2.05 cm=[tex]2.05\times 10^{-2} m[/tex]

[tex]1 cm=10^{-2} m[/tex]

Wavelength in medium=[tex]\lambda=\frac{\lambda_0}{n}[/tex]

Using the formula

Wavelength in medium=[tex]\lambda=\frac{500\times 10^{-9}}{1.6}=312.5\times 10^{-9} m[/tex]

Distance between source and scree except glass plate=[tex]2.05\times 10^{-2}-3.45\times 10^{-3}=17.05\times 10^{-3} m[/tex]

Number of wavelength=[tex]\frac{distance];in\;air}{wavelength\;in\;air}+\frac{distance\;in\;glass}{wavelength\;in\;glass}[/tex]

Number of wavelength=[tex]\frac{17.05\times 10^{-3}}{500\times 10^{-9}}+\frac{3.45\times 10^{-3}}{312.5\times 10^{-9}}[/tex]

Number of wavelength=[tex]4.51\times 10^4[/tex]

RELAXING NOICE
Relax