Answer:
σ₁ = [tex]3.167 * 10^{-6}[/tex] C/m²
σ₂ = [tex]7.6 * 10 ^{-6}[/tex] C/m²
Explanation:
The given data :-
i) The radius of smaller sphere ( r ) = 5 cm.
ii) The radius of larger sphere ( R ) = 12 cm.
iii) The electric field at of larger sphere ( E₁ ) = 358 kV/m. = 358 * 1000 v/m
[tex]E_{1} = (\frac{1}{4\pi\epsilon }) (\frac{Q_{1} }{R^{2} } )[/tex]
[tex]358000 = 9 * 10^{9 } *\frac{Q_{1} }{0.12^{2} }[/tex]
Q₁ = 572.8 [tex]* 10^{-9}[/tex] C
Since the field inside a conductor is zero, therefore electric potential ( V ) is constant.
V = constant
∴[tex]\frac{Q_{1} }{R} = \frac{Q_{2} }{r}[/tex]
[tex]Q_{2} = \frac{r}{R} *Q_{1}[/tex]
[tex]Q_{2} = \frac{5}{12} *572.8*10^{-9}[/tex] = [tex]238.666 *10^{-9}[/tex] C
Surface charge density ( σ₁ ) for large sphere.
Area ( A₁ ) = 4 * π * R² = 4 * 3.14 * 0.12 = 0.180864 m².
σ₁ = [tex]\frac{Q_{1} }{A_{1} }[/tex] = [tex]\frac{572.8 *10^{-9} }{0.180864}[/tex] = [tex]3.167 * 10^{-6}[/tex] C/m².
Surface charge density ( σ₂ ) for smaller sphere.
Area ( A₂ ) = 4 * π * r² = 4 * 3.14 * 0.05² =0.0314 m².
σ₂ =[tex]\frac{Q_{2} }{A_{2} }[/tex] = [tex]\frac{238.66 *10^{-9} }{0.0314}[/tex] = [tex]7.6 * 10 ^{-6}[/tex] C/m²