Answer: The total pressure above the solution at 30°C is 45.29 mmHg
Explanation:
We are given:
Molality of methanol = 6.0 m
This means that 6.0 moles of methanol present in 1 kg or 1000 g of pure water
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]
Given mass of water = 1000 g
Molar mass of water = 18 g/mol
Putting values in above equation, we get:
[tex]\text{Moles of water}=\frac{1000g}{18g/mol}=55.56mol[/tex]
Mole fraction of a substance is given by:
[tex]\chi_A=\frac{n_A}{n_A+n_B}[/tex]
[tex]\chi_{CH_3OH}=\frac{n_{CH_3OH}}{n_{CH_3OH}+n_{water}}\\\\\chi_{CH_3OH}=\frac{6}{6+55.56}=0.0975[/tex]
[tex]\chi_{water}=\frac{n_{water}}{n_{CH_3OH}+n_{water}}\\\\\chi_{water}=\frac{55.56}{6+55.56}=0.9025[/tex]
To calculate the total pressure, we use the equation given by Dalton and Raoults, which is:
[tex]p_T=(p_A\times \chi_A)+(p_B\times \chi_B)[/tex]
where,
[tex]p_T[/tex] = total vapor pressure = ?
We are given:
Mole fraction of methanol = 0.0975
Mole fraction of water = 0.9025
Vapor pressure of methanol = 170.0 mmHg
Vapor pressure of water = 31.82 mmHg
Putting values in above equation, we get:
[tex]p_T=(170\times 0.0975)+(31.82\times 0.9025)\\\\p_T=45.29mmHg[/tex]
Hence, the total pressure above the solution at 30°C is 45.29 mmHg