Respuesta :
Answer : The mass of cryolite produced will be, 54.38 kg
Solution : Given,
Mass of [tex]Al_2O_3[/tex] = 13.2 kg = 13200 g
Mass of [tex]NaOH[/tex] = 50.4 kg = 50400 g
Mass of [tex]HF[/tex] = 50.4 kg = 50400 g
Molar mass of [tex]Al_2O_3[/tex] = 101.9 g/mole
Molar mass of [tex]NaOH[/tex] = 40 g/mole
Molar mass of [tex]HF[/tex] = 20 g/mole
Molar mass of [tex]Na_3AlF_6[/tex] = 209.9 g/mole
First we have to calculate the moles of [tex]Al_2O_3,NaOH[/tex] and [tex]HF[/tex].
[tex]\text{ Moles of }Al_2O_3=\frac{\text{ Mass of }Al_2O_3}{\text{ Molar mass of }Al_2O_3}=\frac{13200g}{101.9g/mole}=129.54moles[/tex]
[tex]\text{ Moles of }NaOH=\frac{\text{ Mass of }NaOH}{\text{ Molar mass of }NaOH}=\frac{50400g}{40g/mole}=1260moles[/tex]
[tex]\text{ Moles of }HF=\frac{\text{ Mass of }HF}{\text{ Molar mass of }HF}=\frac{50400g}{20g/mole}=2520moles[/tex]
Now we have to calculate the limiting and excess reagent.
The balanced chemical reaction is,
[tex]Al_2O_3+6NaOH+12HF\rightarrow 2Na_3AlF_6+9H_2O[/tex]
From the balanced reaction we conclude that
The mole ratio of [tex]Al_2O_3,NaOH[/tex] and [tex]HF[/tex] is, 1 : 6 : 12
And, the ratio of given moles of [tex]Al_2O_3,NaOH[/tex] and [tex]HF[/tex] is, 129.54 : 1260 : 2520
From this we conclude that, [tex]NaOH,HF[/tex] is an excess reagent because the given moles are greater than the required moles and [tex]Al_2O_3[/tex] is a limiting reagent and it limits the formation of product.
Now we have to calculate the moles of [tex]Na_3AlF_6[/tex]
From the reaction, we conclude that
As, 1 mole of [tex]Al_2O_3[/tex] react to give 2 mole of [tex]Na_3AlF_6[/tex]
So, 129.54 moles of [tex]Al_2O_3[/tex] react to give [tex]129.54\times 2=259.08[/tex] moles of [tex]Na_3AlF_6[/tex]
Now we have to calculate the mass of [tex]Na_3AlF_6[/tex]
[tex]\text{ Mass of }Na_3AlF_6=\text{ Moles of }Na_3AlF_6\times \text{ Molar mass of }Na_3AlF_6[/tex]
[tex]\text{ Mass of }Na_3AlF_6=(259.08moles)\times (209.9g/mole)=54380.892g=54.38kg[/tex]
Thus, the mass of cryolite produced will be, 54.38 kg
