The lines $\overleftrightarrow{AB}$ and $\overleftrightarrow{CD}$ are parallel. If $\angle BAE=54^{\circ}$ and $\angle DCE=25^{\circ}$, what is the measure of $\angle AEC$?

Use an asymptote convertor if needed:

[asy]
size( 200 ) ;

pair A = (0,0) ;
pair B = (0,2) ;
pair C = (3,0.5) ;
pair D = (3,2.5) ;
pair ptE = extension( A , A+dir(90-54) , C , C+dir(90+25) ) ;

draw( (0,-0.5)--(0,3) , linewidth(1.3) ) ;
draw( (3,-0.5)--(3,3) , linewidth(1.3) ) ;
draw( A--ptE--C ) ;
dot(Label( "$A$" , A , W )) ;
dot(Label( "$B$" , B , W )) ;
dot(Label( "$C$" , C , E )) ;
dot(Label( "$D$" , D , E )) ;
dot(Label( "$E$" , ptE , N )) ;

label( "$54^{\circ}$" , A , 5dir(70) ) ;
label( "$25^{\circ}$" , C , 8dir(100) ) ;
[/asy]

Respuesta :

Answer:

  79°

Step-by-step explanation:

Label the intersection of AE and CD point F. Then angle CFE is an alternate interior angle with angle BAE, so is congruent. The angle of interest is an exterior angle to triangle CFE, so is the sum of remote interior angles CFE (54°) and DCE (25°). That sum is ...

  m∠AEC = 54° +25° = 79°

Ver imagen sqdancefan

Based on the definition of alternate interior angles, the measure of ∠AEC is: 79°

What are Alternate Interior Angles?

Interior angles that are alternating each other on a transversal are congruent, and are called alternate interior angles.

Thus:

m∠AEC = m∠BAE + m∠FCE

Substitute

m∠AEC = 54° + 25°

m∠AEC = 79°

Therefore, based on the definition of alternate interior angles, the measure of ∠AEC is: 79°

Learn more about alternate interior angles on:

https://brainly.com/question/20344743

ACCESS MORE
EDU ACCESS