Answer:
The options are approximations of the exact answers:
A) [tex]1\times10^6N/C[/tex]
B) [tex]2\times10^{-13}N[/tex]
C) [tex]1\times10^{-2}V[/tex]
D) Toward the inner wall
E) [tex]3\times10^{-17}J[/tex]
Explanation:
A) The electric field in a parallel plate capacitor is given by the formula [tex]E=\frac{\sigma}{k\epsilon_0}[/tex], where [tex]\epsilon_0=8.85\times10^{-12}C/Vm[/tex] and in our case [tex]\sigma=10^5C/m^2[/tex] and, for air,[tex]k=1.00059[/tex], so we have:
[tex]E=\frac{10^5C/m^2}{(1.00059)(8.85\times10^{-12}C/Vm)}=1.13\times10^6N/C[/tex]
B) The K+ ion has one elemental charge excess, so its charge is [tex]q=1.6\times10^{-19}C[/tex], and the force a charge experiments under an electric field E is given by F=qE, so we have:
[tex]F=(1.6\times10^{-19}C)(1.13\times10^6N/C)=1.81\times10^{-13}N[/tex]
C) The potential difference between two points separated a distance d under an uniform electric potential E is given by [tex]\Delta V=dE[/tex], so we have:
[tex]\Delta V=(10\times10^{-9}m)(1.13\times10^6N/C)=1.13\times10^{-2}V[/tex]
D) The electic field goes from positive to negative charges, so it goes towards the inner wall.
E) The work done by an electric field through a potential difference [tex]\Delta V[/tex] on a charge Q is [tex]W=Q\Delta V[/tex], and is equal to the kinetic energy imparted on it, so we have:
[tex]K=(3\times10^{-15}C)(1.13\times10^{-2}V)=3.39\times10^{-17}J[/tex]