Answer:
Transmissivity is [tex]186.96\times 10^6 ft^2/sec[/tex]
Explanation:
So the well 1 has
r1=26ft
h1=29.34ft
The well 2 has
r2=73 ft
h2=32.56 ft
Converting the rate of flow from gal/min to ft3/day
[tex]Q=220\frac{gal}{min}\times\frac{1 ft^3}{7.48 gal}\times\frac{1440 min}{1 day}\\Q=42400\frac{ft^3}{day}[/tex]
Now the transmissivity is is given as
[tex]T=\frac{\dot{Q}}{2\pi(h_2-h_1)}ln(\frac{r_2}{r_1})[/tex]
Now by substituting values
[tex]T=\frac{\dot{Q}}{2\pi(h_2-h_1)}ln(\frac{r_2}{r_1})\\T=\frac{42400}{2\pi(32.56-29.34)}ln(\frac{73}{26})\\T=\frac{42400}{6.44\pi }\left(\ln \left(73\right)-\ln \left(26\right)\right)\\T=2164 ft^2/day[/tex]
Now converting it to ft^2/sec
[tex]T=2164 ft^2/day\\T=186.96\times 10^6 ft^2/sec[/tex]
Transmissivity is [tex]186.96\times 10^6 ft^2/sec[/tex]