Respuesta :
Answer:
Explanation:
Part (a):
Let [tex]x_1,\; x_2,\; x_3,\; x_4,\;x_5 \;and \;x_6[/tex] be the 6 ores. The constraints will be as follows:
For at least 21% of Metal A:
[tex]19x_1+43x_2+17x_3+20x_4+0x_5+12x_6 \geq 21[/tex]
For at most 12% of Metal B:
[tex]15x_1+10x_2+0x_3+12x_4+24x_5+18x_6 \leq 12[/tex]
For at most 7% of Metal C:
[tex]12x_1+25x_2+0x_3+0x_4+10x_5+16x_6 \leq 7[/tex]
For at least 30% of Metal D:
[tex]14x_1+7x_2+53x_3+18x_4+31x_5+25x_6 \geq 30[/tex]
For at most 65% of Metal D:
[tex]14x_1+7x_2+53x_3+18x_4+31x_5+25x_6 \leq 65[/tex]
Practical constraint:
[tex]x_1,\; x_2,\; x_3,\; x_4,\;x_5 \;and \;x_6\;\geq 0[/tex]
This is a minimization problem and the Cost Function Z is:
[tex]Z_{(min)\;=\;}27x_1+25x_2+32x_3+22x_4+20x_5+24x_6[/tex]
Part (b):
The problem is converted to canonical form by adding slack, surplus and artificial variables as appropriate.
As the constraint 1 is of type '≥' we should add the surplus variable [tex]x_{7}[/tex] and the artificial variable [tex]x_{12}[/tex].
As the constraint 2 is of type '≤' we should add the slack variable [tex]x_{8}[/tex].
As the constraint 3 is of type '≤' we should add the slack variable[tex]x_{9}[/tex].
As the constraint 4 is of type '≥' we should add the surplus variable [tex]x_{10}[/tex] and the artificial variable [tex]x_{11}[/tex].
As the constraint 5 is of type '≤' we should add the slack variable [tex]x_{11}[/tex].
MAXIMIZE:
[tex]Z = -27x_1 -25x_2-32x_3 -22x_4 -20x_5 -24 x_6 + 0 x_7 + 0 x_8 + 0 x_9 + 0 x_{10} + 0 x_{11} + 0 x_{12} + 0 x_{13}[/tex]
Subject to
[tex]19 x_1 + 43 x_2 + 17 x_3 + 20 x_4 + 12 x_6 -1 x_7 + 1 x_{12} = 21\\\\15 x_1 + 10 x_2 + 12 x_4 + 24 x_5 + 18 x_6 + 1 x_8 = 12\\\\12 x_1 + 25 x_2 + 10 x_5 + 16 x_6 + 1 x_9 = 7\\\\14 x_1 + 7 x_2 + 53 x_3 + 18 x_4 + 31 x_5 + 25 x_6 -1 x_{10} + 1 x_{13} = 30\\\\14 x_1 + 7 x_2 + 53 x_3 + 18 x_4 + 31 x_5 + 25 x_6 + 1 x_11 = 65\\\\x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13} \geq 0[/tex]
Using a solver, the optimal solution value is
Z = $23.9125 per ton of ore
[tex]x_1[/tex] = 0
[tex]x_2[/tex] = 0.2792
[tex]x_3[/tex] = 0.5292
[tex]x_4[/tex] = 0
[tex]x_5[/tex] = 0
[tex]x_6[/tex] = 0