Respuesta :
Answer:
Explanation:
The initial temperature is 27+273= 300K.
The volume doubles. V∝T when pressure is constant (isobaric expansion). So the new temperature is 2x300=600K.
There are different ways to do the above step. E.g. you could say:
P1V1/T1 = P2V2/T
P1V1/300 = P2(2xV1)/T2
V1 cancels and since P1= P2, P1 and P2 cancel
1/300 = 2/T2
T2 = 600K
but this is much more work than using simple proportion.
For the isobaric (constant pressure) expansion, the heat transferred is:
Q = Cp.n.ΔT
= 33.26 x 0.370 x (600 - 300)
= 3692J
= 3690J to 3 significant figures
When the gas expands adiabatically there is no heat transfer (by definition of adiabatc).
So the total heat transfer is 3690J.
Answer:
- Total heat Q supplied = [tex]3259.81J[/tex]
- Total change in the internal energy ΔU = [tex]0J[/tex]
- The total work W done = [tex]3259.565J[/tex]
- Final volume V = [tex]0.1136m^3[/tex]
Explanation:
[tex]V_2 = 2V_1\\\\P_1 = \frac{nRT_1}{V_1}\\\\P_1 = \frac{0.33*8.314*297}{7100*10^{-6}}\\\\P_1 = 1.148*10^5 pa[/tex]
[tex]T_2 = T_1(\frac{V_2}{V_1}) = 2T_1[/tex]
[tex]Q = nCp(T_2 - T_1)\\\\Q = 0.33 (33.26)(297)\\\\Q = 3259.81J[/tex]
Workdone,
[tex]w = P(V_2 - V_1)\\\\w = P(2V_1 - V_1)\\\\w = 1.148*10^5(7100*10^{-6})\\\\w = 815.1J[/tex]
Internal energy,
[tex]U = Q - w\\\\U = 3259.81 - 815.1\\\\U = 2444.71J[/tex]
Change in internal energy,
[tex]U^1 = -2444.71J[/tex]
Therefore,
A) Total heat applied = [tex]Q = 3259.81J[/tex]
B) Total change in internal energy
[tex]\delta U = U + U^1 = 0J[/tex]
C) Total workdone = [tex]w + w^1[/tex]
[tex]= 815 + \frac{0.33*8.314}{\frac{4}{3}-1}*297\\\\= 3259.565J[/tex]
D)
[tex]V_3 = 2^3*V_2\\\\= 2^3 * 2(7100*10^{-6})\\\\= 0.1136m^3[/tex]
For more information, visit
https://brainly.com/question/14866968