Answer: x-bar = y-bar = 0 whereas z-bar = 8/3
M= (c^2)/8 which is intern equal to 2[tex]\sqrt{2}[/tex]
Step-by-step explanation:
Find the area, by setting the limits as
= [tex]4\cdot \int _0^{\frac{\pi }{2}}\int _0^2\int _{r^2}^4\:rdzdrd\theta[/tex]
[tex]=4\cdot \int _0^{\frac{\pi }{2}}\int _0^2r\cdot \:4-r^3drd\theta[/tex]
[tex]=4\cdot \int _0^{\frac{\pi }{2}}4d\theta[/tex]
[tex]=8\pi[/tex]
Therefore;
Mxy= [tex]\int _0^{2\pi }\int _0^2\int _{r^2}^4\:zrdzdrd\theta[/tex]
z-bar = 8/3
M= 8[tex]\pi[/tex] dividing it into two volume gives us = 4[tex]\pi[/tex]
means [tex]4\pi =\int _0^{2\pi }\int _0^{\sqrt{c}}\int _r^c\:rdzdrd\theta[/tex]
[tex]4\pi =\left(\pi c^2-2\pi \frac{c^{\frac{3}{2}}}{3}\right)[/tex]
c=2[tex]\sqrt{2}[/tex]