Answer:
The can mass is 0,00359 kg or 3,59 g
Explanation:
1. Relevant Data:
Steel thickness= 0.13 mm or 0.013 mm
h=11 cm
d=6 cm
ρ=800 kg/m^3
2. Calculate mass from densisty equation:
[tex]\rho=\frac{m}{v}[/tex], then [tex]m=\rho .v[/tex]
We need to estimate the volume of the can to calculate the mass.
3. Estimate volume using differentials:
Cylinder volume equation is:
[tex]V=\frac{1}{4}\pi d^{2}h[/tex]
Considering that the can is an object with a hole inside, then we need to estimate the real volume of the sheet of steel.
Using differentials we have:
[tex]dV=\frac{1}{2}\pi Dh (dD)[/tex]
Then, we could say that [tex]dD=0.013 cm[/tex]
Replacing the values of d, h and dD, we obtain:
[tex]dV=\frac{1}{6}\pi (6 cm)(11 cm)(0,013 cm)[/tex]
[tex]dV=0,4492 cm^3[/tex]
4. Calculate the mass
Convert volume unit into [tex]m^3[/tex]
[tex]0,4492 cm^3x\frac{1 m^3}{1x10^6 cm^3} =0,4492 x 10^-6 m^3[/tex]
Calculate mass
[tex]m=\rho .v[/tex]
[tex]m=8000 \frac{kg}{m^3}.0,4492 x10^-6 m^3[/tex]
[tex]m=0,00359 kg =3,59 g[/tex]