Respuesta :

Answer:

[tex]f(g(x))=x[/tex]

Step-by-step explanation:

Given a certain function [tex]f(x)[/tex], and then its inverse function [tex]f^{-1}(x)[/tex], the following expression is valid:

[tex](f\cdot f^{-1})(x)=x[/tex]

where the expression

[tex](f\cdot f^{-1})(x)=f(f^{-1}(x))[/tex]

indicates the composite function.

In this problem, we have:

[tex]f(x)=5x-25[/tex]

And then, its inverse function is

[tex]g(x)=\frac{1}{5}x+5[/tex]

To verify that g(x) is the inverse of f(x), the following expression must be true:

[tex]f(g(x))=x[/tex]

Substituting the expression of g(x) into f(x), we find that:

[tex]f(g(x))=5g(x)-25=5(\frac{1}{5}x+5)-25=x+25-25=x[/tex]

So, g(x) is the inverse of f(x).

Answer:

F(g(x))=x

Step-by-step explanation:

ACCESS MORE